Example: Natural Images Data

Input: 4 million data points on \mathbb{S}^7 , coming from high-contrast 3×3 image patches

(source: [Lee, Pederson, Mumford 03])

Example: Natural Images Data

Example: Natural Images Data

Topology from Data

Input: point cloud $P \subset \mathbb{R}^d$

- \rightarrow uncover the topological structure of the space(s) underlying the data
- \rightarrow inspect data at all scales and see what 'persists'

 $d_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $d_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $d_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $d_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

Challenge:

provide theoretical guarantees

(sufficient sampling conditions under which the barcode of d_P reveals the homology of the underlying space)

In practice: The inference pipeline

simplicial filtration

Čech and Rips filtrations

source: http://http://en.wikipedia.org/wiki/Clifford_torus

source: http://http://en.wikipedia.org/wiki/Clifford_torus

Input: 4 million data points on \mathbb{S}^7 , coming from high-contrast 3×3 image patches

(source: [Lee, Pederson, Mumford 03])

Preprocessing: - select bottom x% of data points according to k-NN distance - sample 5000 points uniformly at random from filtered point set

Preprocessing: - select bottom x% of data points according to k-NN distance - sample 5000 points uniformly at random from filtered point set

Preprocessing: - select bottom x% of data points according to k-NN distance - sample 5000 points uniformly at random from filtered point set

⁽source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008])

Preprocessing: - select bottom x% of data points according to k-NN distance - sample 5000 points uniformly at random from filtered point set

⁽source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008])

TDA for time series modeling & analysis

 $f:\mathbb{N}\to\mathbb{R}$

	signal	embedded data
$\mathrm{TD}_{m,\tau}(f) := \begin{bmatrix} f(t) \\ f(t+\tau) \\ \vdots \\ f(t+\tau) \end{bmatrix}$	periodicity	circularity
t: step / delay	# prominent harmonics (N)	min. ambient dimension $(m \ge 2N)$
m au: window size	# non-commensurate freq.	intrinsic dimension
m+1: embedding dimension		$(\mathbb{S}^1 \times \cdots \times \mathbb{S}^1)$

[J. Perea et al.:"SW1PerS: Sliding windows and 1-persistence scoring", 2015]

TDA for time series modeling & analysis

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space
- no Fourier transform needed

TDA for time series modeling & analysis

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space

no Fourier transform needed

Dynamical system:

Thm: [Nash, Takens] Given a Riemannian manifold X of dimension $\frac{m}{2}$, it is a **generic property** of $\phi \in \text{Diff}_2(X)$ and $\alpha \in C^2(X, \mathbb{R})$ that

$$X \to \mathbb{R}^{m+1}$$
$$x \mapsto (\alpha(x), \alpha \circ \phi(x), \cdots, \alpha \circ \phi^m(x)$$

is an embedding.