Topological Persistence

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over \mathbb{R}
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over \mathbb{R}
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over $\mathbb R$
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over $\mathbb R$
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over $\mathbb R$
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over $\mathbb R$
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over \mathbb{R}
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over \mathbb{R}
- Track the evolution of the topology (homology) throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over $\mathbb R$
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging over \mathbb{R}
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features

3

 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

Filtration: $F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 \subseteq F_5 \cdots$

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

Filtration: $F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 \subseteq F_5 \cdots$

Example 1: *offsets filtration* (nested family of unions of balls, cf. previous slide) Example 2: *simplicial filtration* (nested family of simplicial complexes)

Filtration: $F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 \subseteq F_5 \cdots$

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

Example 2: *simplicial filtration* (nested family of simplicial complexes)

Example 3: sublevel-sets filtration (family of sublevel sets of a function $f: X \to \mathbb{R}$)

Filtration: $F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 \subseteq F_5 \cdots$

topological level

algebraic level

Persistence module: $H_*(F_1) \to H_*(F_2) \to H_*(F_3) \to H_*(F_4) \to H_*(F_5) \cdots$

Example:

(the barcode is a complete descriptor of the algebraic structure of M)

Theorem. Let M be a persistence module over an index set $T \subseteq \mathbb{R}$. Then, M decomposes as a direct sum of *interval modules* $\mathbf{k}_{\lceil b,d \rceil}$:

in the following cases:

- T is finite [Gabriel 1972] [Auslander 1974],
- *M* is *pointwise finite-dimensional* (every space *M_t* has finite dimension) [Webb 1985] [Crawley-Boevey 2012].

Moreover, when it exists, the decomposition is **unique** up to isomorphism and permutation of the terms [Azumaya 1950].

(Note: this is independent of the choice of field \mathbf{k} .)

Example:

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005] . . .

Input: simplicial filtration

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005] . . .

Input: simplicial filtration

Output: boundary matrix

	1	2	3	4	5	6	7
1				*		*	
2				*	*		
3					*	*	
4							*
5							*
6							*
7							

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005] . . .

- Input: simplicial filtration
- Output: boundary matrix reduced to column-echelon form

	1	2	3	4	5	6	$\left \begin{array}{c} 7 \end{array} \right $
1				*		*	
2				*	*		
3					*	*	
4							*
5							*
6							*
7							

	1	2	3	4	5	6	7
1				*			
2				1	*		
3					1		
4							*
5							*
6							1
7							

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005] . . .

Input: simplicial filtration

Output: boundary matrix reduced to column-echelon form

simplex pairs give finite intervals:

[2,4), [3,5), [6,7)

unpaired simplices give infinite intervals: $[1, +\infty)$

	1	2	3	4	5	6	7
1				*		*	
2				*	*		
3					*	*	
4							*
5							*
6							*
7							

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005] . . .

Input: simplicial filtration

Output: boundary matrix reduced to column-echelon form

PLU factorization:

- Gaussian elimination
- fast matrix multiplication (divide-and-conquer) [Bunch, Hopcroft 1974]
- random projections?

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005] . . .

Input: simplicial filtration

Output: boundary matrix reduced to column-echelon form

PLU factorization:

- Gaussian elimination
 - PLEX / JavaPLEX (http://appliedtopology.github.io/javaplex/)
 - Dionysus (http://www.mrzv.org/software/dionysus/)
 - Perseus (http://www.sas.upenn.edu/~vnanda/perseus/)
 - Gudhi (http://gudhi.gforge.inria.fr/)
 - PHAT (https://bitbucket.org/phat-code/phat)
 - DIPHA (https://github.com/DIPHA/dipha/)
 - CTL (https://github.com/appliedtopology/ctl)

Stability of persistence barcodes

Stability of persistence barcodes

Theorem: For any pfd functions $f, g: X \to \mathbb{R}$, $d_{\infty}(Dg f, Dg g) \leq ||f - g||_{\infty}$

Metric on persistence diagrams

Persistence diagram \equiv finite multiset in the open half-plane $\Delta\times\mathbb{R}_{>0}$

Metric on persistence diagrams

Persistence diagram \equiv **finite** multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$ Given a partial matching $M : A \leftrightarrow B$:

- cost of a matched pair $(a,b) \in M$: $c_p(a,b) := ||a-b||_{\infty}^p$

- cost of an unmatched point $c \in A \sqcup B$: $c_p(c) := ||c - \bar{c}||_{\infty}^p$

- cost of M:

Metric on persistence diagrams

Persistence diagram \equiv finite multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$ Given a partial matching $M : A \leftrightarrow B$:

- cost of a matched pair $(a,b) \in M$: $c_p(a,b) := ||a-b||_{\infty}^p$

 $p \rightarrow \infty$

- cost of an unmatched point $c \in A \sqcup B$: $c_p(c) := \|c - \overline{c}\|_{\infty}^p$

- cost of M:

$$c_{p}(M) := \left(\sum_{(a, b) \text{ matched}} c_{p}(a, b) + \sum_{c \text{ unmatched}} c_{p}(c)\right)^{1/p}$$
Def: p-th diagram distance (extended metric):

$$d_{p}(A, B) := \inf_{M:A \leftrightarrow B} c_{p}(M)$$
Def: bottleneck distance:

$$d_{2}(A, B) := \lim_{m \to a} d_{n}(A, B)$$