Topological Persistence

## Topological Persistence (in a nutshell)

$X$ topological space



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family



## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features


## Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, t])$ for $t$ ranging over $\mathbb{R}$
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features
- Alternate representation as a (multi-) set of points in the plane (diagram).



## Example: Distance Function

$$
\begin{aligned}
f_{P}: & \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$



## Example: Distance Function



## Example: Distance Function



## Example: Distance Function

$$
\begin{aligned}
f_{P}: & \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$



## Example: Distance Function

$$
\begin{aligned}
f_{P}: & \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$



## Example: Distance Function



## Example: Distance Function

$$
f_{P}: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
x \mapsto \min _{p \in P}\|x-p\|_{2}
$$



## Example: Distance Function



## Example: Distance Function



## Mathematical viewpoint: homology + quivers

Filtration: $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq F_{4} \subseteq F_{5} \cdots$

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

## Mathematical viewpoint: homology + quivers

Filtration: $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq F_{4} \subseteq F_{5} \cdots$
Example 1: offsets filtration (nested family of unions of balls, cf. previous slide) Example 2: simplicial filtration (nested family of simplicial complexes)


## Mathematical viewpoint: homology + quivers

Filtration: $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq F_{4} \subseteq F_{5} \cdots$
Example 1: offsets filtration (nested family of unions of balls, cf. previous slide) Example 2: simplicial filtration (nested family of simplicial complexes)

Example 3: sublevel-sets filtration (family of sublevel sets of a function $f: X \rightarrow \mathbb{R}$ )


## Mathematical viewpoint: homology + quivers

Filtration: $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq F_{4} \subseteq F_{5} \cdots$

topological level
(homology functor)
algebraic level

Persistence module: $H_{*}\left(F_{1}\right) \rightarrow H_{*}\left(F_{2}\right) \rightarrow H_{*}\left(F_{3}\right) \rightarrow H_{*}\left(F_{4}\right) \rightarrow H_{*}\left(F_{5}\right) \cdots$

## Mathematical viewpoint: homology + quivers

Example:


$$
\mathbf{k} \xrightarrow{\binom{1}{0}} \mathbf{k}^{2} \xrightarrow{\left(\begin{array}{ll}
0 & 1
\end{array}\right)} \mathbf{k} \xrightarrow{\binom{0}{1}} \mathbf{k}^{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)} \mathbf{k}^{2} \ldots
$$

## Mathematical viewpoint: homology + quivers

Theorem. Let $M$ be a persistence module over an index set $T \subseteq \mathbb{R}$. Then, $M$ decomposes as a direct sum of interval modules $\mathbf{k}_{\lceil b, d]}$ :

$$
\begin{aligned}
& \underbrace{0 \xrightarrow{0} \cdots \xrightarrow{0} 0}_{t<\lceil b, d\rfloor} \xrightarrow{0} \underbrace{\mathbf{k} \xrightarrow{\mathrm{id}} \cdots \xrightarrow{\mathrm{id}} \mathbf{k}}_{\lceil b, d\rfloor} \xrightarrow{0} \underbrace{0 \xrightarrow{0} \cdots \xrightarrow{0}}_{t>\lceil b, d\rfloor} \\
& M \simeq \bigoplus_{j \in J} \mathbf{k}_{\left\lceil b_{j}, d_{j}\right\rfloor}
\end{aligned}
$$

(the barcode is a complete descriptor of the algebraic structure of $M$ )

## Mathematical viewpoint: homology + quivers

Theorem. Let $M$ be a persistence module over an index set $T \subseteq \mathbb{R}$. Then, $M$ decomposes as a direct sum of interval modules $\mathbf{k}_{\lceil b, d\rfloor}$ :

$$
\underbrace{0 \xrightarrow{0} \cdots \xrightarrow{0} 0}_{t<\lceil b, d\rfloor} \xrightarrow{0}>\underbrace{\mathbf{k} \xrightarrow{\mathrm{id}} \cdots \cdots \stackrel{\mathrm{id}}{\longrightarrow} \mathbf{k}}_{\lceil b, d\rfloor} \xrightarrow{0} \underbrace{0 \xrightarrow{0} \cdots \xrightarrow{0}}_{t>\lceil b, d\rfloor}
$$

in the following cases:

- $T$ is finite [Gabriel 1972] [Auslander 1974],
- $M$ is pointwise finite-dimensional (every space $M_{t}$ has finite dimension) [Webb 1985] [Crawley-Boevey 2012].
Moreover, when it exists, the decomposition is unique up to isomorphism and permutation of the terms [Azumaya 1950].
(Note: this is independent of the choice of field $\mathbf{k}$.)


## Mathematical viewpoint: homology + quivers

Example:

$\mathbf{k} \xrightarrow{\binom{1}{0}} \mathbf{k}^{2} \xrightarrow{\left(\begin{array}{ll}0 & 1\end{array}\right)} \mathbf{k} \xrightarrow{\binom{0}{1}} \mathbf{k}^{2} \xrightarrow{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)} \mathbf{k}^{2} \ldots$

## Computation of barcodes: matrix reduction

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005]
Input: simplicial filtration


## Computation of barcodes: matrix reduction

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005]
Input: simplicial filtration
Output: boundary matrix


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | $*$ |  | $*$ |  |
| 2 |  |  |  | $*$ | $*$ |  |  |
| 3 |  |  |  |  | $*$ | $*$ |  |
| 4 |  |  |  |  |  |  | $*$ |
| 5 |  |  |  |  |  |  | $*$ |
| 6 |  |  |  |  |  |  | $*$ |
| 7 |  |  |  |  |  |  |  |

## Computation of barcodes: matrix reduction

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005]
Input: simplicial filtration
Output: boundary matrix reduced to column-echelon form


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | $*$ |  | $*$ |  |
| 2 |  |  |  | $*$ | $*$ |  |  |
| 3 |  |  |  |  | $*$ | $*$ |  |
| 4 |  |  |  |  |  |  | $*$ |
| 5 |  |  |  |  |  |  | $*$ |
| 6 |  |  |  |  |  |  | $*$ |
| 7 |  |  |  |  |  |  |  |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | $*$ |  |  |  |
| 2 |  |  |  | 1 | $*$ |  |  |
| 3 |  |  |  |  | 1 |  |  |
| 4 |  |  |  |  |  |  | $*$ |
| 5 |  |  |  |  |  |  | $*$ |
| 6 |  |  |  |  |  |  | 1 |
| 7 |  |  |  |  |  |  |  |

## Computation of barcodes: matrix reduction

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005]
Input: simplicial filtration
Output: boundary matrix reduced to column-echelon formsimplex pairs give finite intervals:

$$
[2,4),[3,5),[6,7)
$$


$\square$ unpaired simplices give infinite intervals: $[1,+\infty)$

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | $*$ |  | $*$ |  |
| 2 |  |  |  | $*$ | $*$ |  |  |
| 3 |  |  |  |  | $*$ | $*$ |  |
| 4 |  |  |  |  |  |  | $*$ |
| 5 |  |  |  |  |  |  | $*$ |
| 6 |  |  |  |  |  |  | $*$ |
| 7 |  |  |  |  |  |  |  |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | $*$ |  |  |  |
| 2 |  |  |  | $(1)$ | $*$ |  |  |
| 3 |  |  |  |  | $(1)$ |  |  |
| 4 |  |  |  |  |  |  | $*$ |
| 5 |  |  |  |  |  |  | $*$ |
| 6 |  |  |  |  |  |  | $(1)$ |
| 7 |  |  |  |  |  |  |  |

## Computation of barcodes: matrix reduction

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005]
Input: simplicial filtration
Output: boundary matrix reduced to column-echelon form

## PLU factorization:

- Gaussian elimination
- fast matrix multiplication (divide-and-conquer) [Bunch, Hopcroft 1974]
- random projections?


## Computation of barcodes: matrix reduction

[Edelsbrunner, Letscher, Zomorodian 2002] [Carlsson, Zomorodian 2005]
Input: simplicial filtration
Output: boundary matrix reduced to column-echelon form

## PLU factorization:

- Gaussian elimination
- PLEX / JavaPLEX (nttp://appli iedtopopogy.github. io/javappex/)
- Dionysus (http:///wuy.mrzv.org/software/dionysus/)
- Perseus (http://uwv. sas. upenn.edu//vnanda/perseus/)
- Gudhi (http://guhi. .gorge. inria.fr/)
- PHAT (https://bitbucket.org/phat-code/phat)
- DIPHA (https://github.con/DIPHA/dipha/)
- CTL (https://github.com/appliedtopoplogy/ct1)


## Stability of persistence barcodes

$X$ topological space

$$
f: X \rightarrow \mathbb{R}
$$

$$
\operatorname{Dg} f
$$



## Lipschitz

signature: persistence diagram


## Stability of persistence barcodes

Theorem: For any pfd functions $f, g: X \rightarrow \mathbb{R}$,

$$
\mathrm{d}_{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) \leq\|f-g\|_{\infty}
$$




## Metric on persistence diagrams

Persistence diagram $\equiv$ finite multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$


## Metric on persistence diagrams

Persistence diagram $\equiv$ finite multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$
Given a partial matching $M: A \leftrightarrow B$ :

- cost of a matched pair $(a, b) \in M: c_{p}(a, b):=\|a-b\|_{\infty}^{p}$
- cost of an unmatched point $c \in A \sqcup B: c_{p}(c):=\|c-\bar{c}\|_{\infty}^{p}$
- cost of $M$ :
$c_{p}(M):=\left(\sum_{(a, b) \text { matched }} c_{p}(a, b)+\sum_{c \text { unmatched }} c_{p}(c)\right)^{1 / p}$



## Metric on persistence diagrams

Persistence diagram $\equiv$ finite multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$
Given a partial matching $M: A \leftrightarrow B$ :

- cost of a matched pair $(a, b) \in M: c_{p}(a, b):=\|a-b\|_{\infty}^{p}$
- cost of an unmatched point $c \in A \sqcup B: c_{p}(c):=\|c-\bar{c}\|_{\infty}^{p}$
- cost of $M$ :
$c_{p}(M):=\left(\sum_{(a, b) \text { matched }} c_{p}(a, b)+\sum_{c \text { unmatched }} c_{p}(c)\right)^{1 / p}$

Def: $p$-th diagram distance (extended metric):

$$
\mathrm{d}_{p}(A, B):=\inf _{M: A \leftrightarrow B} c_{p}(M)
$$

Def: bottleneck distance:

$$
\mathrm{d}_{\infty}(A, B):=\lim _{p \rightarrow \infty} \mathrm{~d}_{p}(A, B)
$$



