Degree-0 persistence (a.k.a. Size Theory)

Input: \(f : X \to \mathbb{R} \)

Idea: look at (path-) connected components of excursion sets of \(f \):
- sublevel sets: \(f^{-1}(-\infty, t] \)
- superlevel sets: \(f^{-1}(t, +\infty) \)

Hyp: \(f \) is tame, i.e., every excursion set has finitely many (path-) connected components (CCs).

Def. \(F(t) := f^{-1}(-\infty, t] \) (sublevel set)

\[\Pi_0 F(t) := \{ \text{CCs of } F(t) \}. \]

Obs. \(A \leq t, \forall C \in \Pi_0 F(s), \exists ! C' \in \Pi_0 F(t) \) s.t. \(C \cap C' \neq \emptyset \) (in fact \(C \subseteq C' \)). This is because the CCs grow with\(t \) and are pairwise disjoint.

\(\Rightarrow \) there is an induced map \(\varphi(s, t) : \Pi_0 F(s) \to \Pi_0 F(t) \) that tells where each CC of \(F(s) \) "goes" in \(F(t) \).

Examples:
Define: Given \(F \in \mathbf{CR} \) and \(C \subseteq \Pi_0 F(t) \):

- \(b(c) := \inf \left\{ s \leq t \mid c \subseteq \operatorname{Im} \gamma(s, t) \right\} \) [birth]
- \(d(c) := \sup \left\{ m > t \mid \forall s \in \gamma(t, m) \neg \left(\gamma(t, m)(c) \subseteq c \right) \right\} \) [death]

\([b(c), d(c)] \) is the box corresponding to \(C \) in the barcode of \(f \).

Formally:

\[
\operatorname{Barcode}(f) := \left\{ [b(c), d(c)] \mid C \subseteq C_0 \right\}
\]

where

\[
C := \{ C \mid C \subseteq \Pi_0 F(t) \text{ for some } t \in \mathbf{R} \}
\]

\(\hat{C} := \{ C \mid C \subseteq \Pi_0 F(t) \text{ for some } t \in \mathbf{R} \} \) where \(C \prec C' \Rightarrow \gamma(t, m)(C) = C' \)

\[
\Pi_0 F(t) \overset{\sim}{\to} \Pi_0 F(m)
\]

and \(m \leq d(c) \) if \(C \) is still an independent \(C \)

Def. \(\operatorname{Dy} f := \{ (b(c), d(c)) \in \mathbf{R}^2 \mid C \subseteq C_0 \} \) (\(\Delta \) this is a multiset).

Thin (stability):

For any two functions \(f, g : X \to \mathbf{R} \),

\[
\| \phi (D_{\infty} f, D_{\infty} g) \|_{\infty} \leq \| f - g \|_{\infty}
\]
Computing degree-0 persistence
to record connected components

Input: graph $G = (V, E)$, map $f: V \cup E \rightarrow \mathbb{R}$

Type: graph filtration, i.e., $f(v, v) \geq \max \{ f(u), f(w) \}$

Preproc:
- Sort $V \cup E$ by increasing lexicographic order (f-value, then δ).
- Get a sequence (v_1, \ldots, v_m) of vertices/edges.
- Initialize a union-find data structure U.

Main loop:
- for $i = 1$ to m do:
 - if v_i is a vertex v then:
 - create new entry $e_v := \{v\}$ in V
 - add v to c.c. by v
 - else v_i is an edge (u, v):
 - find entries e_u and e_v containing
 respectively u and v in U
 - if $e_u \subset e_v$ then: // assume δ order that
 - merge e_v into e_u in U
 - print out “\cdot” + $f(e_u)$ + “,” + $f((u, v))$ + “\cdot”

Post proc:
- for each remaining entry in V:
 - print out “\cdot” + $f(e_v)$ + “,” + ∞”

Running time:
- $\text{Preproc: } O(m \log n)$
- $\text{Main: } O(m \cdot \log n)$
- $\text{Post Proc: } O(m \cdot \text{union-find})$

Example:
- Lexicographic order:
 - $(b, a, \{b, a\}, f, d, c, \{c, d\}, \{b, c\}, \{c, d\}, \{a\})$
- Output:
 - $\{\{a, b\}, \{b, c\}, \{c, d\}, \{e, f\}, \{c, e\}, \{c, d, e\}, \{a, f\}\}$