
INF556 Topological Data Analysis

Final Exam — 3 hours

December 16, 2022

Important:

� The exercises and problem are independent of one another.

� The text of the exam is written in English. Your answers can be written indifferently in
French or in English.

� Please keep in mind that the quality of your answers (completeness of the arguments and
clarity of their exposition) will be key for the grading.

� All printed documents are allowed. By contrast, computers, cellphones, tablets, pocket
calculators, etc., are forbidden.

1 Some calculations...

Let the field of coefficients be Z/2Z.

Question 1. Compute the barcode associated with the simplicial filtration depicted in Figure 1.
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Figure 1: A simplicial filtration.

Question 2. Deduce the homology of the topological space underlying the simplicial complex
of Figure 1.
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2 Scissors and glue...

Question 3. The projective line RP1 is obtained from the unit circle S1 by identifying antipodal
points: x ∼ −x for every x ∈ S1. Show that RP1 is homeomorphic to the circle S1 itself. A
proof by pictures showing the sequence of gluing and twisting operations will be enough.

Question 4. Show that the quotient space depicted in Figure 2 is homeomorphic to the torus.
Again, a proof by pictures showing the sequence of cuttings and gluings will be enough.
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Figure 2: The opposite sides of the hexagon are glued together with the given orientations.

3 Bouquets of circles and spheres

Given topological spaces X1, · · · , Xn and fixed basepoints x1 ∈ X1, · · · , xn ∈ Xn, define their
bouquet as the quotient of the disjoint union of the Xi’s by the identification of the xi’s, that is:

X1 ∨ · · · ∨Xn :=

(
n⊔

i=1

Xi

)
/ ∼

where
⊔

denotes the disjoint union and where ∼ denotes the equivalence relation induced by
the identifications xi ∼ xj , 1 ≤ i ≤ j ≤ n. See Figure 3 for an illustration with n = 8.

X7X6X5X4X3X2X1 X8x1 = · · · = x8

Figure 3: A bouquet of 8 circles.
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Question 5. Compute the homology (in Z/2Z) of a bouquet of n circles with basepoints, for
arbitrary n. You can proceed for instance by induction, and do not forget that for calculations
we use simplicial homology on simplicial complexes.

Question 6. Assume the bouquet of circles is embedded in the plane as in Figure 3. Compute
then the homology of its complement in the plane.

Question 7. Same questions for a bouquet of n 2-spheres with basepoints, embedded in R3.

4 Problem: the space of persistence diagrams

Let (X , dX ) be a metric space. For x, y ∈ X , we call a path from x to y a continuous map
γ : [0, 1] → X such that γ(0) = x, γ(1) = y. We note Γ(x, y) the set of all such paths. For all
the remainder of this problem, we will suppose that X is always path-connected, that is Γ(x, y)
is never empty for any x, y ∈ X .

A subdivision of [0, 1] is given by an integer n ⩾ 2 and a n-tuple t1 ⩽ .. ⩽ tn such that
t1 = 0, tn = 1. We write S the set of all subdivisions. We define the length of a path γ to be:

L(γ) := sup
(t1..tn)∈S

n−1∑
i=1

dX (γ(ti), γ(ti+1)) (1)

We now define the geodesic distance on X to be:

dg(x, y) := inf
γ∈Γ(x,y)

L(γ) (2)

We finally say that a path γ ∈ Γ(x, y) is a geodesic between x and y if it achieves the
infimum in (2), and that (X , dX ) is a geodesic space if any two points x, y are connected by such
a geodesic (i.e. the infimum in (2) is always achieved).

4.1 General facts

Question 8. Let (X , dX ) be a metric space. Show that ∀x, y ∈ X , dg(x, y) ⩾ dX (x, y)

Question 9. Show that (Rd, ||.||2) is a geodesic space.

Question 10. Let (X , dX ) be a geodesic space. Show that the geodesic distance introduced in
(2) is indeed a distance over X , i.e it satisfies the following axioms:

� ∀x, y ∈ X , dg(x, y) = 0 ⇔ x = y

� ∀x, y ∈ X , dg(x, y) = dg(y, x)

� ∀x, y, z ∈ X , dg(x, z) ⩽ dg(x, y) + dg(y, z)

4.2 Geodesics for persistence diagrams

In the following, we consider that a persistence diagram is a finite multiset of points1 in
R2
> := {(x1, x2) ∈ R2|x2 > x1} (called the off-diagonal points), together with a unique virtual

point (representing the diagonal) {∆} with infinite (countable) multiplicity. We say that ϕ is
a matching between X and Y , noted ϕ ∈ Π(X,Y ), if ϕ is a bijection between the points in X
(including all copies of {∆}) and the points in Y (including all copies of {∆}).

1A multiset is a set of points with multiplicities. Given a point x, its copies can be labeled e.g. x(1)..x(n) and
treated as different points despite their being located at the same place.
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Remark: This is equivalent to the definition given during the lectures but will be more con-
venient to use here.

We endow the space of persistence diagrams with the d2 metric: for two diagrams X,Y we
have,

d2(X,Y ) =

(
inf

ϕ∈Π(X,Y )

∑
x∈X

||x− ϕ(x)||22

) 1
2

(3)

with the convention that ||x − ∆||2 = ||x − π∆(x)||2, where π∆(x) denotes the orthogonal
projection of x onto the diagonal, and ||∆−∆||2 = 0.

A matching ϕ between X and Y which minimizes (3) is said to be optimal.

Goal: The goal of this subsection is to show that the set of persistence diagrams endowed
with the d2 metric is a geodesic space.

Question 11. Show that Π(X,Y ) is never empty. Show also that the infimum in (3) is always
achieved. Is it unique?

Question 12. Let X,Y be two diagrams and ϕ be an optimal matching between them. We
introduce γ : t 7→ {(1 − t)x + t ϕ(x) | x ∈ X}. Show that γ is a geodesic between X and Y .
Conclude.

4.3 Curvature of the space of persistence diagrams

An important step towards understanding the structure of a geodesic space is to study its
curvature. The goal of this subsection is twofold: first, to prove that there is no upper bound
on the curvature of the space of persistence diagrams; second, to prove that the curvature is
everywhere lower-bounded by zero.

For the first objective, we use the following characterization of spaces with curvature bounded
from above. If a geodesic space (X , dX ) has curvature upper-bounded by some κ > 0, then for
any x, y ∈ X such that dX (x, y) <

1
κ there is a unique geodesic between x and y.

Question 13. Using this characterization, exhibit a counterexample (or a family thereof) show-
ing that there is no upper bound on the curvature of the space of persistence diagrams.

For the second objective, we use the following characterization: given a geodesic space
(X , dX ), we say that X is non-negatively curved if for allX,Y ∈ X, for all geodesic γ : [0, 1] → X
between X and Y , and any Z ∈ X , we have:

∀t ∈ [0, 1], dX (Z, γ(t))
2 ⩾ t dX (Z, Y )2 + (1− t) dX (Z,X)2 − t (1− t) dX (X,Y )2 (4)

When (4) appears to be an equality (for all X,Y, Z, γ, t), we say that X has curvature zero.

Question 14. Prove that (Rd, ||.||2) has curvature zero.

We now consider three arbitrary diagrams, say X,Y, Z. Let ϕYX be an optimal matching
between X and Y , and let γ be the corresponding geodesic as per Question 12. For t ∈ [0, 1],
we introduce ψt : X → R2

> ∪ {∆} defined by ψt(x) = (1− t)x + t ϕYX(x), and we also consider
ϕtZ : Z → γ(t) an optimal matching between Z and γ(t). We finally introduce ϕXZ = (ψt)

−1 ◦ϕtZ
and ϕYZ = ϕYX ◦ ϕXZ .

Question 15. Prove that, for any x ∈ X, if there is some t ∈ (0, 1) such that ψt(x) = ∆, then
x = ∆ and ϕYX(x) = ∆.
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Question 16. Prove the following results:

d2(Z, γ(t))
2 =

∑
z∈Z

||z − [(1− t)ϕXZ (z) + tϕYZ (z)]||2 (5)

d2(Z, Y )2 ⩽
∑
z∈Z

||z − ϕYZ (z)||2 (6)

d2(Z,X)2 ⩽
∑
z∈Z

||z − ϕXZ (z)||2 (7)

d2(X,Y )2 =
∑
z∈Z

||ϕXZ (z)− ϕYZ (z)||2 (8)

Question 17. Combine Eqs (4-8) to conclude that the space of persistence diagrams is non-
negatively curved.
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