
INF556 Topological Data Analysis

Final Exam — 3 hours

December 17, 2021

Note: The text of the exam is written in English. Your answers can be written indifferently
in French or in English. All printed documents are allowed. Computers and pocket calculators
are forbidden.

1 Euler characteristic

Given a topological space X and a field k, the Euler characteristic is the quantity:

χ(X;k) =
+∞∑
i=0

(−1)i dim Hi(X;k).

Question 1. Show that χ is a topological invariant, that is: for any spaces X,Y that are
homotopy equivalent, χ(X;k) = χ(Y ;k).
Hint: look at what happens to each individual homology group.

Now we want to prove the Euler-Poincaré theorem:

Theorem 1. For any simplicial complex X and any field k:

χ(X;k) =
+∞∑
i=0

(−1)ini(X),

where ni(X) denotes the number of simplices of X of dimension i.

For this we will use topological persistence. Consider an arbitrary filtration of X:

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xm = X.

Assume without loss of generality that a single simplex σj is inserted at each step j:

∀j = 1, · · · ,m, Xj \Xj−1 = {σj}.

Note that m is then equal to the number of simplices of X, that is:

m =
+∞∑
i=0

ni(X).

Let us apply the persistence algorithm to this simplicial filtration. Recall from lecture 5
that we have the following property:
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Lemma 2. At each step j, the insertion of simplex σj either creates an independent dj-
dimensional cycle (i.e. increases the dimension of Hdj (Xj−1;k) by 1) or kills a (dj − 1)-
dimensional cycle (i.e. decreases the dimension of Hdj−1(Xj−1;k) by 1), where dj is the di-
mension of σj.

Question 2. Using Lemma 2, prove Theorem 1.
Hint: proceed by induction on j.

Question 3. Deduce that the Euler characteristic of a triangulable space is independent of the
choice of field k.

2 The Dunce Hat

Recall that the Dunce Hat is obtained by indentifying the three edges of a triangle as shown in
Figure 1.
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Figure 1: The Dunce Hat.

Question 4. Build a triangulation of the Dunce Hat (you may draw a picture to represent it).
Beware that your triangulation must be a simplicial complex, not a general cell complex.

Question 5. Use your simplicial complex to compute the homology of the Dunce Hat.
Hint: to avoid tedious calculations, you can proceed as in exercise 1: pick a filtration of your
complex then apply the persistence algorithm; for each simplex σj inserted, use Lemma 2 to
predict its effect on the homology (identify the created dj-cycle or the killed (dj − 1)-cycle).

3 Eccentricity-based signatures

Let (X,dX) be a finite metric space. Define the eccentricity as follows:

∀x ∈ X, ecc(x) =
1

2
max{dX(x, x′) | x′ ∈ X}.

This function takes its values in R+. For any t ∈ R+, let Xt denote the t-sublevel set of ecc,
that is:

Xt = ecc−1([0, t]) = {x ∈ X | ecc(x) ≤ t}.

Consider the filtration E(X,dX) defined by:

∀t ∈ R+, Et = Rt(Xt, dX).
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where Rt(Xt, dX) denotes the Rips complex of Xt of parameter t. Our goal here is to show that
this filtration defines a stable signature, that is:

Theorem 3. For any finite metric spaces (X,dX) and (Y, dY ), we have

d∞b (Dgm E(X,dX), Dgm E(Y, dY )) ≤ 2 dGH(X,Y ).

We will use the following embedding result, which we saw in PC 8:

Lemma 4. Any finite metric space (Z, dZ) embeds isometrically into (Rn, `∞), where n denotes
the cardinality of Z.

Let (X,dX) and (Y,dY ) be two finite metric spaces, and let ε > dGH(X,Y ). As we saw in
PC 8, (X,dX) and (Y, dY ) can be jointly embedded isometrically into (Rd, `∞), for some d > 0,
such that the Hausdorff distance between their images is at most ε. The construction of the
joint embedding is illustrated in Figure 2 and relies on Lemma 4 (for the second step in the
construction).

We call respectively X ′ = γ ◦ γX(X) and Y ′ = γ ◦ γY (Y ) the images of X and Y through
the embedding.

(X, dX )

(Y, dY )

(Z, dZ )

γX

γY

(γX (X) t γY (Y ), dZ )

(R|X|+|Y |, `∞)

id

id

γ

X′

Y ′

Figure 2: Outline of the embedding for the proof of Theorem 3.

Question 6. Show that E(X ′, `∞) is isomorphic to E(X,dX) as a simplicial filtration.
Hint: this means that there is a bijection X → X ′ that induces a bijection between the simplices
of the two filtrations, such that the times of appearance of the simplices are preserved.

Similarly, E(Y ′, `∞) is isomorphic to E(Y,dY ). Thus, we have:

d∞b (Dgm E(X,dX),Dgm E(Y, dY )) = d∞b (Dgm E(X ′, `∞),Dgm E(Y ′, `∞)).

For any finite set S ⊂ Rd and any t ≥ 0, let St denote the t-offset of S in the `∞-norm, that is:

St = {x ∈ Rd | min
s∈S
‖x− s‖∞ ≤ t}.

Question 7. Show that X ′tt ⊆ Y ′
t+ε
t+ε and Y ′tt ⊆ X ′

t+ε
t+ε for any t ≥ 0.

Question 8. Define a function fX′ : Rd → R whose t-sublevel set is X ′tt for every t ∈ R+.
Similarly, define a function fY ′ : Rd → R whose t-sublevel set is Y ′tt for every t ∈ R+.

Question 9. Deduce that ‖fX′ − fY ′‖∞ ≤ ε.
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Question 10. Deduce now that d∞b (Dgm fX′ ,Dgm fY ′) ≤ ε, where Dgm h denotes the persis-
tence diagram of the filtration of the sublevel sets of h.

Question 11. Deduce now that d∞b (Dgm EC(X ′, `∞),Dgm EC(Y ′, `∞)) ≤ ε, where the fil-
tration EC(Z ′, `∞) has the space Ct(Z

′
t, `
∞) for every t ∈ R+ — here Ct stands for the Čech

complex of parameter t.

Question 12. Deduce finally that d∞b (Dgm E(X ′, `∞),Dgm E(Y ′, `∞)) ≤ 2ε.

Question 13. Conclude.

4 Matchings induced by morphisms of persistence modules

Let φ : M → N be a morphism between two persistence modules indexed over the real line R.
For simplicity we will assume that M and N decompose into finite direct sums of interval
modules:

M '
n⊕
i=1

k[ai,bi) N '
m⊕
j=1

k[cj ,dj),

where k[a,b) denotes the interval module supported on the interval [a, b). As you can see, we
are also assuming that all the intervals are right-open. Finally, to simplify things further, we
are assuming that all the ai’s and bi’s are different from one another, so that the cardinality of
the set

⋃n
i=1{ai, bi} is exactly 2n. This is what happens e.g. when M is computed from a finite

simplicial filtration using the persistence algorithm. We make the same assumption on the cj ’s
and dj ’s, but note that we may have ai = cj or bi = dj for some pairs (i, j).

For now, let us pick an arbitrary pair (i, j) and consider a morphism φij : k[ai,bi) → k[cj ,dj).

Question 14. Assume that φij 6= 0. Show then that cj ≤ ai < dj ≤ bi.

Question 15. Assume that φij is surjective. Show then that cj = ai < dj ≤ bi.

Dually, we have cj ≤ ai < dj = bi whenever φij is injective.

Let us call Dgm M and Dgm N respectively the persistence barcodes of M and N . We have
Dgm M = {[ai, bi) | 1 ≤ i ≤ n} and Dgm N = {[cj , dj) | 1 ≤ j ≤ m}, which are sets since all
the bars’ endpoints are different in each barcode.

Question 16. Assume that φ : M → N is surjective. Show then that there exists an injection
φ∗ : Dgm N ↪→ Dgm M such that, for every 1 ≤ j ≤ m, we have φ∗([cj , dj)) = [cj , b) for some
b ≥ dj .

Dually, when φ : M → N is injective, there exists an injection φ∗ : Dgm M � Dgm N such
that, for every 1 ≤ i ≤ n, we have φ∗([ai, bi)) = [c, bi) for some c ≤ ai.

We now decompose an arbitrary morphism φ : M → N as follows:

M
φ //

π "" ""

N

Im φ
- 

ι

<<

where π = φ with codomain Imφ, and where ι is the inclusion of Imφ as a submodule of N .
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Let us take for granted the fact that Imφ itself decomposes as a finite direct sum of interval
modules supported on intervals of the form [e, f) with pairwise different endpoints (the proof
of this fact is omitted here). The preceding questions show then that π and ι induce injections
π∗ : Dgm Imφ ↪→ Dgm M and ι∗ : Dgm Imφ → Dgm N . Consider the partial matching Γφ
between Dgm M and Dgm N defined by:

([ai, bi), [cj , dj)) ∈ Γφ ⇐⇒ ∃ [e, f) ∈ Dgm Imφ s.t. π∗([e, f)) = [ai, bi) and ι∗([e, f)) = [cj , dj).

This matching is called the canonical matching induced by φ.

Question 17. Show that we have cj ≤ ai < dj ≤ bi for every matched pair ([ai, bi), [cj , dj)) ∈
Γφ.

This result is the first step of the so-called Induced Matching Theorem, originally proven by
Bauer and Lesnick, which is at the heart of an alternate proof of the algebraic stability theorem
for persistence modules. The details can be found in Bauer, Lesnick (2015): Induced match-
ings and the algebraic stability of persistence barcodes, Journal of Computational Geometry,
6(2):162–191.
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