Sudoku Checker

Source: https://code.google.com/codejam/contest/2929486/dashboard

Problem

Sudoku is a popular single player game. The objective is to fill a 9×9 matrix with digits so that each column, each row, and all 9 non-overlapping $3 x 3$ sub-matrices contain all of the digits from 1 through 9. Each 9x9 matrix is partially completed at the start of game play and typically has a unique solution.

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Given a completed $\mathbf{N}^{2} \mathrm{x} \mathbf{N}^{2}$ Sudoku matrix, your task is to determine whether it is a valid solution. A valid solution must satisfy the following criteria:

- Each row contains each number from $\mathbf{1}$ to \mathbf{N}^{2}, once each.
- Each column contains each number from $\mathbf{1}$ to \mathbf{N}^{2}, once each.
- Divide the $\mathbf{N}^{2}{ }_{x} \mathbf{N}^{2}$ matrix into \mathbf{N}^{2} non-overlapping $\mathbf{N x} \mathbf{N}$ sub-matrices. Each sub-matrix contains each number from $\mathbf{1}$ to \mathbf{N}^{2}, once each.

You don't need to worry about the uniqueness of the problem. Just check if the given matrix is a valid solution.

Input

The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with an integer \mathbf{N}. The next \mathbf{N}^{2} lines describe a completed Sudoku solution, with each line contains exactly $\mathbf{N}^{\mathbf{2}}$ integers. All input integers are positive and less than 1000.

Output

For each test case, output one line containing "Case \#x: y", where x is the case number (starting from 1) and y is "Yes" (quotes for clarity only) if it is a valid solution, or "No" (quotes for clarity only) if it is invalid. Note that the judge is case-sensitive, so answers of "yes" and "no" will not be accepted.

Limits

$1 \leq \mathbf{T} \leq 100$.

Small dataset
$\mathbf{N}=3$.

Large dataset
$3 \leq \mathbf{N} \leq 6$.

Sample

Input

Output

```
3
3
5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
345 2 8 6 1 7 9
3
1 2 3 4 5 6 7 8 9
14 3 4 5 6 7 8 9
1234567 8 9 Case #1: Yes
1 2 3 4 5 6 7 8 9 Case #2: No
1 2 3 4 5 6 7 8 9 Case #3: No
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 345678 9
123456789
3
5 3 4 6 7 8 9 1 2
672 1 9 5 3 4 8
14 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 999 3 7 9 1
7 1 3 9 2 4 8 5 6
96 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
345286179
```

