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Chapter 1

Introduction

Objectives

This course is about algorithms and their efficiency.
More precisely, the objective of this course is to answer to the following ques-

tions: What are the limits of algorithms, and of today’s computers?

Algorithm?

The word “algorithm” comes from the name of mathematician Al-Khwârizmî (La-
tinised at middle age as Algorithmi), who at 9th century wrote several books on the
resolution of equations. We will discuss the notion of algorithm, and the notion of
problem solvable by an algorithm, or of function computed by some algorithm.

We will first prove that there are problems that cannot be solved by an algorithm.
Out of the problems that admit a solution by an algorithm, we will then try to

determine those which admit a solution with reasonable resources: We will discuss
the resources (time, memory, etc) necessary to solve a problem.

Thanks The author of this document would like to thank strongly Stefan Mengel
for many comments on previous versions of this document. I also would like to
thanks warmly the students of the École Polytechnique Bachelor course CSE-304 for
the year 2019-2020 for comments and feedback. Some special thanks to Louis de
Benoist De Gentissart, Agathe De Vulpian, Guillaume Lainé and Skander Moalla for
some detailed feedback, or bugs about previous versions of some of the chapters of
this document, or about related slides.

Some parts of this document are very strongly inspired from a French version,
that has been used for the course INF423, and then INF412 at École Polytechnique.
The author of this document would like to thank strongly Johanne Cohen, Bruno
Salvy and David Monniaux for their comments on preliminary versions of this latter
document in French. I also thank the promotions 2011-2012, 2012-2013, 2013-2014,
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2014-2015, 2015-2016, 2016-2017, 2017-2018, 2018-2019, 2019-2020, 2020-2021, 2021-
2022, 2022-2023 of École Polytechnique for their feedback on INF423 and then INF412.
Some special thanks to Louis Abraham, Sariah Al Saati, Olivier Bailleux, Juliette Buet,
Ismaël Cahu, Carlo Ferrari, Léo Gaspard, Estienne Granet, Pierre-Jean Grenier, Roberto
Moura, Alexis Le Dantec, Denis Langevin, Emmanuel Lazard, Stéphane Lengrand,
Arnaud Lenoir, Louis-François Rigano, Louis Rustenholz, Matthieu Vermeil, and
Zigfrid Zvezdin, for some detailed feedback, with precise suggestions of improve-
ment, or for having pointed out some problems about preliminary versions of previ-
ous French versions of some parts of this document. Thanks also to Romain Cosson
and Rodrigue Lelotte for feedback on corrections of previous exams for INF423 and
INF412.

This document is still in some non-perfect form.
All comments (even language, typographic, orthographic, etc) on this document

are welcome and should be be sent to bournez@lix.polytechnique.fr.

On the exercises Some of the exercises are corrected. The solutions are found and
the end of the document in a chapter devoted to the solutions. The exercises marked
with a star require more thought.

1.1 Mathematical concepts

1.1.1 Sets, Functions

Let E be a set and e an element. We write e∈E to mean that e is an element of set E .
If A and B are two sets, we write A⊂B to mean that every element of A is an element
of B . We say in that case that A is a subset of B . When E is a set, the collection of
all the subsets of E constitutes a set, called the power set of E , that we will denote by
P (E). We will write A∪B , A∩B for respectively the union and intersection of the sets
A and B . When A is a subset of E , we will write Ac for the complement of A in E .

Exercise 1.1 Let A,B be two subsets of E. Prove the Morgan laws: (A∪B)c =
Ac ∩B c and (A∩B)c = Ac ∪B c .

Exercise 1.2 Let A,B ,C three subsets of E. Prove that A∩(B ∪C ) = (A∩B)∪
(A∩C ) and A∪ (B ∩C ) = (A∪B)∩ (A∪C ).

Exercise 1.3 (solution on page 227) Let A,B ,C three subsets of E. Prove
that A∩B c = A∩C c if and only if A∩B = A∩C .
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We call Cartesian product of two sets E and F , denoted by E×F , the set of all the
pairs made of an element of E and of an element of F :

E×F = {(x, y)|x ∈ E and y ∈ F }.

Given some integer n ≥ 1, we write E n = E ×·· ·×E for the Cartesian product of E
by itself n times: E n can also be defined1 recursively by E 1 = E , and E n+1 = E ×E n .

Intuitively, a application f from a set E to a set V is an object which associates
to every element e of a set E a unique element f (e) in F . Formally, a function f (one
also talks of partial function) from a set E to a set F is a subset Γ of E ×F , such that
for all x ∈ E there is at most one y ∈ F with (x, y) ∈ Γ. Its domain is the set of the
x ∈ E such that (x, y) ∈ Γ for a certain y ∈ F . Its image is the set of the y ∈ F such
that (x, y) ∈ Γ for a certain x ∈ E . An application f (this is also called a total function)
from a set E to a set F is a function whose domain is E .

A family (xi )i∈I of elements of a set X is some application from a set I to X . I is
called the set of indices and the image by its application of element i ∈ I is denoted
xi .

The Cartesian product generalizes to a family of sets:

E1 ×·· ·×En = {(x1, . . . , xn)|x1 ∈ E1, · · · , xn ∈ En}.

The union and intersection generalize to some arbitrary family of subsets of a set
E . Let (Ai )i∈I be a family of subsets of E .

⋃
i∈I

Ai = {e ∈ E |∃i ∈ I e ∈ Ai };

⋂
i∈I

Ai = {e ∈ E |∀i ∈ I e ∈ Ai }.

Exercise 1.4 Let A be a subset of E, and (Bi )i∈I a family of subsets of E.
Prove the two following equalities:

A
⋃(⋂

i∈I
Bi

)
= ⋂

i∈I
(A∪Bi )

A
⋂(⋃

i∈I
Bi

)
= ⋃

i∈I
(A∩Bi )

We will write N for the set of natural integers, Z for the set of (positive, null, or
negative) integers, R for the set of reals, and C for the set of complex numbers. Z is a
ring. R and C are fields. We will write R>0 for the set of non-negative reals.

1There is a bijection between the objects defined by the two definitions
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1.1.2 Alphabets, Words, Languages

We now recall some basic definitions about words and languages. The terminology,
borrowed from linguistics, remind that historically first works on the concepts of
formal languages were on the modeling of natural language.

A finite set Σ is fixed: In this context, such a set is also called an alphabet. and
the elements of Σ are called letters or symbols.

Example 1.1 • Σbi n = {0,1} is the binary alphabet.

• ΣLati n = {A,B ,C ,D, . . . , Z , a,b,c,d , . . . , z} is the alphabet which consists of
the letters of the Latin alphabet.

• Σnumber = {0,1,2, · · · ,9} is the alphabet which consists of digits in radix 10.

• The set of the printable ASCIIa characters, or set of printed characters is an
alphabet, that one can write ΣASC I I .

• Σexp = {0,1,2, · · · ,9,+,−,∗,/, (, )} is the alphabet of arithmetic expressions.

aWe will not go here to discussions about whether this is precisely what is called the ASCII char-
acters in all generality. We assume ΣASC I I is the set of symbols that can be printed with a keyboard
of a computer. It contains symbols such as é, ö, etc. Actually the original 7-bit version of ASCII
did it fact not contain accents and those were added later on and there were lots of different in-
compatible version for different languages, and we do not intend in this document to go to these
discussions: For us, it contains symbols that can be printed with a keyboard of a computer.

A word w on alphabet Σ is a finite sequence w1w2 · · ·wn of letters (i.e. elements)
of the alphabet Σ. The integer n is called the length of word w . It will be denoted
length(w).

Example 1.2 • 10011 is a word on alphabet Σbi n of length 5.

• 9120 is a word on alphabet Σnumber ,but not a word on the alphabet Σbi n .

• Bon j our is a word of length 6 on alphabetΣLati n ; azr dd f b is also a word
of length 7 on the same alphabet. ;−) is not a word on this alphabet, since
the symbol ; is not in the alphabet ΣLati n defined above.

• Student, El ephant and ££z ′!!!" are words on the alphabet ΣASC I I .

• 243+ (5∗ (1+6)) is a word on alphabet Σexp .

• 24∗ ((((5/+)//+ is a word on alphabet Σexp .

A language on alphabet Σ is a set of words on alphabet Σ. The set of all the words
on alphabet Σ is denoted by Σ∗. The empty word ϵ is the unique word of length 0.
The empty word is a particular word: Similarly to what happens for any other word,
It is possible that a language contains the empty word (which is a particular word),
or that a language doesn’t contain the empty word. Σ∗ contains by definition the
empty word.
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Example 1.3 • {0,1}∗ denotes the set of words over alphabet Σbi n = {0,1}.
For example, 00001101 ∈ {0,1}∗. We have also ϵ ∈ {0,1}∗.

• {hel l o, g oodbye} is a language on ΣLati n . This language contains two
words.

• The set of words of English dictionary is a language on the alphabetΣLati n .

• The set of words of French dictionary is a language on the alphabetΣASC I I ,
since a word such as élève can be written using accentuated letters.

• The set of the phrases of this document is a language on the alphabet of
ASCII characters. Note that the character “ ”, that is to say the blank (space)
character, used to separate the words in a sentence is a particular character
of ASCII alphabet.

• Σexp
∗ contains words such as 24∗ ((((5/+)//+ which is not a valid arith-

metic expression. The set of words which are valid arithmetic expressions,
such as 5+ (2∗ (1−3)∗3), is a particular language on alphabet Σexp .

One then defines an operation of concatenation on words: The concatenation of
word u = u1u2 · · ·un and of word v = v1v2 · · ·vm is the word denoted by u.v defined
by

u1u2 · · ·un v1v2 · · ·vm ,

that is to say the words whose letters are obtained by appending the letters of v
after those of u. The operation of concatenation denoted by . is associative, but not
commutative. The empty word is a right and left neutral element for this operation.
Σ∗ is also called the free monoid on alphabetΣ (since the operation of concatenation
provides a structure of monoid.

We will also write uv for the concatenation u.v . Actually, every word w1w2 · · ·wn

can be seen as w1.w2 · · · .wn , where wi represents the word of length 1 consisting
only of the letter wi . This interpretation of letters as words of length 1 is often very
useful.

Example 1.4 If Σ is the set {a,b}, then aaab is the word of length 4 whose first
three letters are a, and the last is b. It is also the concatenation of four words of
length one: a, a, a and b.

When i is some integer, and w is a word, we write w i for the word obtained
by concatenating the word w i times: If you prefer, w0 is the empty word ϵ, and
w i+1 = w i w = w w i for every integer i .

Example 1.5 By interpreting letters as words of length 1, aaabbc can also be
written a3b2c.

A word u is some prefix of a word w , if there exists a word z such that w = u.z.
This is a proper!prefix if u ̸= w . A word u is a suffix of a word w if there exists some
word z such that w = z.u. This is a proper!suffix if u ̸= w .
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1.1.3 Change of alphabet

It is often useful to rewrite a word on a given alphabet into a word on some other
alphabet. For example, in computer science one often needs to code in binary, that
is to say with alphabet Σ= {0,1}.

One way to change the alphabet is to proceed one letter after the other.

Example 1.6 If Σ is the alphabet {a,b,c}, and Γ= {0,1}, then one can encode Σ∗
in Γ∗ by the function h such hat h(a) = 01, h(b) = 10, h(c) = 11. The word abab
is then encoded by h(abab) = 01100110, that is to say by the word encoded by
coding letter after letter.

Very formally, given two alphabets Σ and Γ, an homomorphism is an application
from Σ∗ into Γ∗ such that

• h(ϵ) = ϵ
• h(u.v) = h(u).h(v) for every words u and v .

Obviously, every homomorphism is perfectly determined by its image on the let-
ters of Σ. It then extends to words of Σ∗ by

h(w1w2 · · ·wn) = h(w1).h(w2). . . . .h(wn)

for every word w = w1w2 · · ·wn .

1.1.4 Graphs

A graph G = (V ,E) consists of a set V , whose elements are called vertices and a subset
of E ⊂ V ×V , whose elements are called arcs. In some books, vertices are called
nodes.

If the arcs are undirected, that is say, if one assumes that every time that there is
the arc (u, v) there is also the arc (v,u), one says that the graph G is undirected and
the elements of E are called edges.

By default, all considered graphs will all be undirected. An edge will then be
denoted uv or {uv}.

When there is an edge between u and v , that is to say when {u, v} ∈ E , one says
that u and v are neighbours. The degree of a vertex u is the number of its neighbours.

A path from s to t is a sequence (s = s0, . . . , sn = t ) of vertices such that, for all
1 ≤ i ≤ n, (si−1, si ) is an arc. A simple path is a path that does not go twice through
the same vertex, i.e. si ̸= s j for i ̸= j . Its origin is the vertex s = s0. Its end is the vertex
sn = t . A circuit is a path of non-null length whose origin coincides with its end, i.e.
s0 = sn .

Example 1.7 The (undirected) graph G = (V ,E) with

• V = {0,1, . . . ,6}

• E = {(0,1), (3,4), (5,1), (6,3), (6,4)}.



1.2. THE DIAGONALISATION METHOD 15

is represented as below.

0

1

2

3

4

5

6

A graph is said to be connected if any two vertices are connected by a path.

Example 1.8 The graph of Example 1.7 is not connected since there is no path
between vertices 1 and 6.

1.2 The diagonalisation method

Remember thatN2 =N×N is countable: It is possible to build a bijection betweenN
and N2. Below, we illustrate one way of running through all the pairs of integers, in
order to realize a bijection betweenN andN2.

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(4,0) (5,0)

(0,4)

(0,5)

(1,4)

(4,1)

. . .

. . .

. . .

. . .

. . .

. . .

Exercise 1.5 (solution on page 227) Prove formally thatN×N is countable
by giving the bijection f :N2 →N of the above figure.

By contrast, the set of subsets of N is not countable: This can be shown with the
diagonalisation method due to Cantor.

The reasoning is as follows: Suppose for contradiction that we can enumerate
the subsets of N. Then write these subsets as T1, T2, . . . Tn . . . . Every subset Ti of
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N can be seen as the row i of an (infinite) matrix M = (Mi , j )i , j whose entries are in
{0,1} and whose element Mi , j is 1 if and only if element j is in the i th subset ofN.

0 1 . . . . . . j . . .

T0

T1

...

Ti

...

Mi , j

We consider then the subset T ∗ obtained by “inverting the diagonal of M”. For-
mally, one considers T ∗ = { j |M j , j = 0}. This subset of N is not among the enumer-
ation, since otherwise it would have some index j0: if j0 ∈ T j0 = T ∗, then we should
have M j0, j0 = 1 by definition of M , and M j0, j0 = 0 by definition of T ∗, which is im-
possible. If j0 ̸∈ T ∗, then we should have M j0, j0 = 0 by definition of M , and M j0, j0 = 1
by definition of T ∗, which is again impossible.

This argument is at the basis of various reasoning in computability theory, as we
will see.

Exercise 1.6 Prove that the set of sequences (un)n∈N with values in {0,1} is
not countable.

Exercise 1.7 Prove that the set R of real numbers is not countable.



Chapter 2

Recurrence and induction

2.1 Motivation

The recursive definitions are ubiquitous in computer science. There are present both
in programming languages, but also in many concepts what we consider in com-
puter science.

Example 2.1 (Lists in JAVA) In JAVA, with

c l a s s L i s t {
int content ;
L i s t next ;
}

L i s t l s t ;

the class List is defined in a recursive ( inductive) manner: by using in the defini-
tion of the class, the field “next’ whose type is the class List itself.

Example 2.2 (Ranked trees) We have defined the ranked trees in the previous
chapter by using the notion of graph. A natural alternative would be to describe
the ranked trees through a recursive definition: A ranked tree is either empty, or
reduced to a vertex (a root), or made of a vertex (a root) and a (ranked) list of
ranked trees (its sons).

In this chapter, we spent some time on the recursive definitions of sets and func-
tions. This will be used to give some clean meaning to recursive definitions in next
chapters.

We will furthermore define in this chapter how it is possible to do some proofs on
structures defined inductively, by introducing the proofs by (structural) induction.

17



18 CHAPTER 2. RECURRENCE AND INDUCTION

2.2 Reasoning by recurrence overN

The structural induction is a generalization of the proof by recurrence: Let’s come
back first to this later to have clear ideas.

When reasoning on the integers, the first principle of induction, also called prin-
ciple of mathematical recurrence is a reasoning mode particular useful.

Theorem 2.1 Let P (n) be predicate (a property) depending on the integer n. If
the the two following conditions are satisfied:

(B) P (0) is true;

(I ) P (n) implies P (n +1) for all n;

then for all integer n, P (n) is true.

Proof: The reasoning is done by contradiction. Consider

X = {k ∈N|P (k) is false}.

If X is non-empty, it admits some least element n. From condition, (B), n ̸= 0, and
hence n − 1 is some integer, and P (n − 1) is true by definition of X . We then get a
contradiction with the property (I ) applied for integer n −1. □

To do a proof by recurrence, we prove a property for 0 (basis case), and we prove
that the property is hereditary, or inductive: P (n) implies P (n +1) for all n.

The concept of inductive proof generalises this idea to other sets than the inte-
gers, namely to sets that are defined inductively.

Exercise 2.1 Consider Sn = 13+33+·· ·+(2n−1)3. Prove by recurrence that
Sn = 2n4 −n2.

Exercise 2.2 Prove by recurrence that
∑n

k=1
1

4k2−1
= n

2n+1 .

Exercise 2.3 (solution on page 227) The theorem above is sometimes called
the “first principle of induction”. Prove the “second principle of induction”:
Let P (n) be a property depending on integer n. If the following property is
satisfied: For all n ∈N, if assuming that for all k < n the property P (k), one
can deduce P (n), then for all n ∈N, the property P (n) is true.
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Exercise 2.4 (solution on page 228) An alphabet Σ is fixed. Recall that a
language over Σ is a subset of Σ∗. If L1 and L2 are two languages of Σ∗, their
concatenation is defined by L1.L2 = {u.v |u ∈ L1, v ∈ L2}. The concatenation
is an associative operation that admits {ϵ} as neutral element. One can then
define the powers of a language L in the following way: L0 = {ϵ}, and for all
integer n > 0, Ln+1 = Ln .L = L.Ln . The star of a language L is defined by
L∗ =⋃

n∈NLn .
Let L and M two languages over Σ, with ϵ ̸∈ L. Prove that in P (Σ∗) (the

languages over alphabet Σ), the equation X = L.X ∪ M admits for unique
solution the language L∗.M.

2.3 Inductive definitions

The inductive definitions aims at defining some subsets of a set E .

Remark 2.1 This remark is for purists. It can be avoided in a first reading of this
document.

We restrict in this document to the framework where one wants to define by
induction some objects that correspond to subsets to an already known set E. We
avoid this to avoid the subtleties and the paradoxes of the set theory.

The very attentive reader will observe that we will often consider the syntac-
tic writing of some objects more than the objects themselves. Indeed, by doing so,
we guarantee that we are living in a set E = Σ∗ for a certain alphabet Σ, and we
avoid to have to worry about the existence of the set E in the following reason-
ing’s.

For example, to formalise completely the Example 2.1 above, we would try to
define some syntactic representation of lists instead of lists.

When one wants to define a set, or a subset of a set, one way to do it is by giving
some explicit definition, that is by describing precisely which are its elements.

Example 2.3 The even integers can be defined by P = {n|∃k ∈N n = 2∗k}.

Unfortunately, this is not always as easy. It is often easier to define a set by some
inductive definition: A typical example of inductive definition is a definition like this
one:

Example 2.4 The even integers also correspond to the least set that contains 0
and such that if n is even, then n +2 is even.

Remark 2.2 Observe that the set of integersN satisfies that 0 is some integer, and
that if n is some integer, then so is n +2. It is hence necessary to say that this is
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the least set with this property.

2.3.1 General principle of an inductive definition

Intuitively, a subset X is defined inductively if it can be defined from some explic-
itly given elements of X , and a mean to construct some new elements of X from
elements of X .

More generally, in an inductive definition,

• some elements of the set X are explicitly given (that is to say, a set B of ele-
ments b of X ). They correspond to the base set of the inductive definition;

• The other elements of the set X are defined, as a function of elements that
already belong to the set X , according to some rules: that is to say we are
given a set of rules R for the formation of new elements. This constitutes the
inductive steps of the inductive definition.

One considers then the least set that contains B and that is stable (one says also
closed) by the rules of R.

2.3.2 Formalisation: First fix point theorem

Formally, all of this is justified by the following theorem.

Definition 2.1 (Inductive definition) Let E be a set. An inductive definition of
a subset X of E consists of:

• a non-empty subset B of E (called the base set)

• and a set of rules R: each rule ri ∈ R is a function (possibly partial) ri from
E ni → E, for some integer ni ≥ 1.

Theorem 2.2 (Fix point theorem) To a inductive definition corresponds a least
set that satisfies the following properties:

(B) it contains B: B ⊂ X ;

(I ) it is stable by the rules rules of R: for every rule ri ∈ R, for every x1, · · · , xni ∈
X , we have ri (x1, · · · , xni ) ∈ X .

One says that this set is inductively defined.

Proof: Let F be the set of subsets of E satisfying (B) and (I ). The set F is non
empty as it contains at least one element: Indeed, the set E satisfies the conditions
(B) and (I ) and hence E ∈F .

We can then consider X defined as the intersection of all the elements of F .
Formally:

X = ⋂
Y ∈F

Y . (2.1)
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Since B is included in each Y ∈F , B is included in X . So X satisfies the condition
(B).

The obtained set satisfies also (I ). Indeed, consider a rule ri ∈ R, and some
x1, · · · , xni ∈ X . We have x1, · · · , xni ∈ Y for every Y ∈ F . For every such Y , since
Y is stable by the rule ri , we must hat r (x1, · · · , xni ) ∈ Y . Since this is true for every
Y ∈F , we also have r (x1, · · · , xni ) ∈ X , which proves that X is stable by the rule ri .

X is the least set that satisfies the conditions (B) and (I ), since it is by definition
included in every other set that satisfies the conditions (B) and (I ).

□

2.3.3 Various notations of an inductive definition

Notation 2.1 We often denote some inductive definition using the notation

(B) x ∈ X

with a line like this one for every x ∈ B

(possibly one writes B ⊂ X );

(I ) x1, · · ·xni ∈ X⇒ri (x1, · · · , xni ) ∈ X

with such a rule for every rule ri ∈ R.

Example 2.5 According to this convention, the inductive definition of even inte-
gers (of the Example 2.4) is denoted by:

(B) 0 ∈ P ;

(I ) n ∈ P ⇒ n +2 ∈ P.

Example 2.6 Let Σ = {(, )} be the alphabet made of the open parenthesis and of
the closing parenthesis. The set D ⊂Σ∗ of well founded parenthesising, called the
Dyck language, is defined inductively by

(B) ϵ ∈ D ;

(I ) x ∈ D ⇒ (x) ∈ D ;

(I ) x, y ∈ D ⇒ x y ∈ D.

Notation 2.2 One sometimes prefers to write some inductive definition as deduction
rules:

B ⊂ X

x1 ∈ X . . . xni ∈ X

ri (x1, . . . , xni ) ∈ X

The principle of such a notation is that an horizontal line means some deduc-
tion rule. What is written above the line is some hypothesis. What is written under
the line is some conclusion. If what is above is empty this means that the conclusion
is true without any hypothesis.
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Notation 2.3 We sometimes write also directly:

b

x1 . . . xni

ri (x1, . . . , xni )

for every b ∈ B,
or

b ∈ B

x1 . . . xni

ri (x1, . . . , xni )

or even:

B

x1 . . . xni

ri (x1, . . . , xni )

2.4 Applications

2.4.1 A few examples

Example 2.7 (N) The subset X ofN defined inductively by

0
n

n +1

is nothing but the whole setN of the integers.

Example 2.8 (Σ∗) The subset X of Σ∗, where Σ is an alphabet, defined induc-
tively by

(B) ϵ ∈ X ;

(I ) w ∈ X ⇒ w a ∈ X , for every a ∈Σ;

is nothing but the whole set Σ∗.

Example 2.9 (Language {anbcn}) The language L on the alphabet Σ = {a,b,c}
of words of the form anbcn , n ∈N, is defined inductively by

(B) b ∈ L;

(I ) w ∈ L ⇒ awc ∈ L.

Exercise 2.5 (solution on page 228) Define inductively the set of well paren-
thesised expressions formed from identifiers taken in a set A and using op-
erators + and ×.
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2.4.2 Labeled binary trees

Let’s recall here the text of the course INF421 (version 2010-2011): “the notion of
binary tree is rather different from the notion of free tree and ranked tree. A binary
tree on a finite set of vertices is either empty, or the disjoint union of a vertex, called
its root„ of a binary tree, called its left sub-tree, and of a binary tree, called its right
sub-tree. It is useful to represent such a binary tree on the form of a triplet A =
(Ag ,r, Ad ).”

We obtain immediately an inductive definition of labeled binary trees from this
text.

Example 2.10 (Labeled binary trees) The set AB of labeled binary trees on the
set A is the subset of Σ∗, where Σ is the alphabet Σ= A∪ {;, (, ), ,}, defined induc-
tively by

(B) ;∈ AB;

(I ) g ,d ∈ AB ⇒ (g , a,d) ∈ AB, for every a ∈ A.

Remark 2.3 In the expression above, (g , a,d) denotes the concatenation of the
word of length 1 (, of word g , of word , of length 1, of word a, of word , of length
1, of word d and of mot ) of length 1. All these words are indeed words over the
alphabet Σ that contains all the required symbols.

Remark 2.4 g ,d ∈ AB ⇒ (g , a,d) ∈ AB, for every a ∈ A denotes the fact that one
repeats, for every a ∈ A, the rule g ,d ∈ AB ⇒ (g , a,d) ∈ AB. This is actually not a
rule, but a family of rules: one for each element a of A.

Remark 2.5 Be careful: a binary tree is not a ranked tree such that all the nodes
are of arity at most 2.

Example 2.11 For example, the labeled binary tree

1

2

3

and the labeled binary tree
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1

2

3

are not the same, since the first corresponds to the word (((;,3,;),2,;),1,;)
and the second to the word (;,1, ((;,3,;),2,;)). However, if these trees are con-
sidered as ranked trees, they are the same.

Exercise 2.6 (solution on page 228) Let A be an alphabet. One defines re-
cursively the sequence of sets (ABn)n∈N by

• AB0 = {;}.

• ABn+1 = ABn ∪ {(a, g ,d)|a ∈ A, g ,d ∈ ABn}

Prove that X = ⋃
n∈N ABn corresponds also to the set AB of labeled binary

trees for the set A.

2.4.3 Arithmetic expressions

One can define the well formed arithmetic expression on the alphabet Σexp of ex-
ample 1.1. Recall that we have defined the alphabet

Σexp = {0,1,2, · · · ,9,+,−,∗,/, (, )}.

Let’s start by defining what is a number in radix 10. Usually, one doesn’t write
an integer in radix 10 by starting by a 0 (except for 0). For example, 000192 is not
authorized. By opposition, 192 is a valid expression.

We obtain the following inductive definition.

Example 2.12 The set N of non-null integers written in radix 10 is the subset of
Σexp

∗, defined inductively by

(B) a ∈N for each a ∈ {1,2, . . . ,9};

(I ) g ∈N ⇒ g a ∈N , for each a ∈ {0,1,2, . . . ,9}.

One can then defined the arithmetic expression in the following way:



2.4. APPLICATIONS 25

Example 2.13 The set Ar i th of arithmetic!expressions is the subset of Σexp
∗,

defined inductively by

(B) 0 ∈ Ar i th;

(B) N ⊂ Ar i th;

(I ) g ,d ∈ Ar i th ⇒ g +d ∈ Ar i th;

(I ) g ,d ∈ Ar i th ⇒ g ∗d ∈ Ar i th;

(I ) g ,d ∈ Ar i th ⇒ g /d ∈ Ar i th;

(I ) g ,d ∈ Ar i th ⇒ g −d ∈ Ar i th;

(I ) g ∈ Ar i th ⇒ (g ) ∈ Ar i th;

For example, we have (1+ 2∗ 4+ 4∗ (3+ 2)) ∈ Ar i th that corresponds to some
valid expression. By opposition, +1−/2( is not in Ar i th.

2.4.4 Terms

Les terms are particular labeled ranked trees. They play an essential role in many
structures in computer science.

Let F = { f0, f1, · · · , fn , · · · } be a set of symbols, called function symbols. To each
such symbol f is associated some integer a( f ) ∈ F , that is called its arity, and this
represents the number of arguments of function symbol f . one writes Fi for the
subset of symbols of functions of arity i . The function symbols of arity 0 are called
constants.

LetΣ the alphabetΣ= F ∪{(, ), , } constituted of F , of the opening parenthesis, the
closing parenthesis, and of comma.

Definition 2.2 (Terms over F ) The set T of terms built over F is the subset of Σ∗
defined inductively by:

(B) F0 ⊂ T
(that is to say: the constants are some terms)

(I ) t1, t2, · · · , tn ∈ T ⇒ f (t1, t2, · · · , tn) ∈ T
for every integer n, for every symbol f ∈ Fn of arity n.

Remark 2.6 In the definition above, we are indeed talking about words over the
alphabet Σ: f (t1, t2, · · · , tn) denotes the word whose first letter is f , the second (,
the following the ones of t1, etc.
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Example 2.14 For example, we can fix F = {0,1, f , g }, with 0 and 1 of arity 0
(these are constants), f of arity 2 and g of arity 1. Then f (0, g (1)) is a term over
F . f (g (g (0)), f (1,0)) is a term over F . f (1) is not a term over F .

The terms over F correspond to particular ranked labeled trees: The nodes are
labeled by symbols of functions from F , and a node labeled by a symbol of arity k
has exactly k sons.

2.5 Proofs by induction

We will need regularly to prove some properties on a the elements of a set X de-
fined inductively. This turns out to be possible by using what is called a proof!by
(structural) induction, sometimes also called proof!by (structural) induction, which
generalises the principle of the proof by recurrence.

Theorem 2.3 (Proof by induction) Let X ⊂ E be a set defined inductively from
a base set B and some rules R. Let P be a predicate expressing some property of
an element x ∈ E: That is to say a property P (x) that is either true or false in a
given element x ∈ E.

If the following conditions are satisfied:

(B) P (x) is satisfied for every element x ∈ B;

(I ) P is hereditary, that is to say stable by the rules of R: Formally, for every
rue ri ∈ R, for every x1, · · · , xni ∈ E, P (x1), · · · ,P (xni ) true implies P (x)
true in x = ri (x1, · · · , xni ).

Then P (x) is true for every element x ∈ X .

Proof: Consider the set Y of elements x ∈ E that satisfy the property P (x). Y
contains B by the property (B). Y is stable by the rules of R by the property (I ). The
set X , that corresponds to the least set that contains B and that is stable by the rules
of R, is hence included in Y . □

Remark 2.7 The proof by induction indeed generalises the proof by recurrence;
Indeed, N is defined inductively as in Example 2.7. A proof by induction on this
inductive definition of N corresponds to a proof by recurrence, that is to say to
hypotheses of Theorem 2.1.

Example 2.15 To prove by induction that all the words of the language defined
inductively in Example 2.9 have as many a’s as c’s, it is sufficient to observe that
this is true for the word reduced to a b: Indeed, this is 0 times the letter a and the
letter c; and that if this holds for the word w, then the word awc has as many
times the letter a than the letter c, namely exactly one more than in word w.
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Exercise 2.7 (solution on page 228) We consider the subset ABS of strict
binary trees defined as the subset of language AB (of labeled by A binary
trees) defined inductively by:

(B) (;, a,;) ∈ ABS, for every a ∈ A.

(I ) g ,d ∈ ABS ⇒ (g , a,d) ∈ ABS, for every a ∈ A.

Prove that

• an element of ABS is always non-empty and without a vertex with
only one non-empty son.

• that in a strict binary tree, the number of vertices n satisfies n = 2 f −1,
where f is the number of leaves.

Exercise 2.8 Prove that any word of the Dyck language has as many open
parenthesis than closing parentheses.

Exercise 2.9 Prove that any arithmetic expression, that is to say any word
of language Ar i th, has as many open parenthesis than closing parentheses.

Exercise 2.10 A binary tree is said to be balanced if for every vertex of the
tree, the difference between the height of its right subtree and the height of
its left subtree value either −1, 0 or 1 (i.e. at most one in absolute value).

• Provide an inductive definition of the set AV L of balance binary trees.

• Define the sequence (un)n∈N by u0 = 0, u1 = 1, and for all n ≥ 2,
un+2 = un+1 +un +1.

Prove that for every x ∈ AV L, n ≥ uh+1 where h and n are respectively
the height and the number of vertices of a tree.

2.6 Derivations

2.6.1 Explicit expression of the elements: Second fix point theorem

We have seen up to now several examples of sets X defined inductively. The exis-
tence of each set X follows from Theorem 2.2, and actually from the Equation (2.1)
used in its proof.
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This is a bottom-up definition of X , as Equation (2.1) defines X from super-sets
of X . This has the clear advantage to show easily the existence of sets defined induc-
tively, a fact that we used abundantly up to now.

However, this has the default that it does not say what the elements of obtained
sets X exactly are.

It is actually also possible to define each set X defined inductively from a bottom-
up definition. One obtains then an explicit definition of the elements of X , with in
addition a way to describe them explicitly.

This is what states the following result:

Theorem 2.4 (Explicit definition of a set defined inductively) Every set X de-
fined inductively from the base set B and from the rules R can also be written

X = ⋃
n∈N

Xn ,

where (Xn)n∈N is the family of subsets of E defined by recurrence by

• X0 = B

• Xn+1 = Xn ∪ {ri (x1, · · · , xni )|x1, · · · , xni ∈ Xn and ri ∈ R}.

In other words, every element of X is obtained by starting from elements of B
and by applying a finite number of times the rules of R to obtain new elements.

Proof: It is sufficient to prove that this set is the least set that contains B and that
is stable by the rules of R.

First since X0 = B , B is indeed in the union of the Xn . Second, if one takes some
rule ri ∈ R, and some elements x1, · · · , xni in the union of the Xn , by definition each
x j is in Xk j for some integer k j . Since the sets Xi are increasing (i.e. Xi ⊂ Xi+k for all
k, which can be proved easily by recurrence over k), all the x1, · · · , xni are in Xn0 for
n0 = max(k1, · · · ,kni ). We obtain immediately that r (x1, · · · , xni ) is in Xn0+1, which
proves that it in the union of the Xn .

Finally, this is the least set, since every set that contains B and that is stable by
the rules of R must contain each of the Xn . This is proved by recurrence over n. This
is true at the rank n = 0, as such a set must contain X0 since it contains B . Suppose
the hypothesis at rank n, that is to say X contains Xn . Since the elements of Xn+1 are
obtained from elements of Xn ⊂ X by applying some rule ri ∈ R, X contains each of
these elements. □

2.6.2 Derivation trees

The bottom-up definition of X from the previous theorem invite to attempt to keep
the trace on how each element is obtained, starting from X and by applying the rules
of R.

Example 2.16 The word 1 + 2 + 3 corresponds to some arithmetic expression.
Here is a proof.
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1 ∈N 2 ∈N
1+2 ∈ Ar i th 3 ∈ Ar i th

1+2+3 ∈ Ar i th

This is not the only one possible. Indeed, we can also write:

1 ∈ Ar i th
2 ∈N 3 ∈N

2+3 ∈ Ar i th
1+2+3 ∈ Ar i th

To encode each trace, the notion of term, on a set F of well-chosen symbols ap-
pears naturally: One considers that each element b of the base set B is symbol of
arity 0. To each rule ri ∈ R is associated some symbol of arity ni . A term t on this set
of symbols is called a derivation. derivation

To each derivation t is associated some element h(t ) as expected: To t of ar-
ity 0, is associated the corresponding element b of B . Otherwise t is of the form
ri (t1, · · · , tni ), for some rule ri ∈ R end for some terms t1, · · · , tni . To such a t is asso-
ciated the result of the application of the rule ri to elements h(t1), · · · ,h(tni ).

Example 2.17 For arithmetic expressions denote by the symbol + of arity 2 the
rule g ,d ∈ Ar i th ⇒ g +d ∈ Ar i th;

The first proof of Example 2.16 corresponds to derivation +(+(1,2),3). The
second to derivation +(1,+(2,3)). The image by the function h of these deriva-
tions is the word 1+2+3.

We can then reformulate the previous theorem in the following way.

Proposition 2.1 Let X be a set defined inductively from the base set B and from
the rules of R. Let D be the set of the derivations corresponding to B and to R.
Then

X = {h(t )|t ∈ D}.

In other words, X is precisely the set of the elements of E that have a derivation.
We see in the previous example, that an element of X may have several deriva-

tions.

Definition 2.3 An inductive definition of X is said non ambiguous if the previ-
ous function h is injective.

Intuitively, this means that there exists a unique way to build every element of
X .

Example 2.18 The following definition ofN2 is ambiguous:

(B) (0,0) ∈N2;

(I ) (n,m) ∈N2 ⇒ (n +1,m) ∈N2;
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(I ) (n,m) ∈N2 ⇒ (n,m +1) ∈N2.

Indeed, one can obtain for example (1,1) by starting from (0,0) and by applying
the second rule, and then the third, but also by applying the third rule, and then
the second.

Example 2.19 The definition of Ar i th of example 2.13 is ambiguous since 1+
2+3 has several derivations.

Example 2.20 This problem is intrinsic to arithmetic expressions, since when we
write 1+2+3, we do not precise if we are talking about the result of the addition
of 1 to 2+3 or of 3 to 1+2, the idea being that since addition is associative, this
is not important.

Example 2.21 To avoid this potential problem, let’s define the set Ar i th′ of the
parenthesised arithmetic expressions as the subset of Σexp

∗, defined inductively
by

(B) 0 ∈ Ar i th;

(B) N ⊂ Ar i th′;

(I ) g ,d ∈ Ar i th′ ⇒ (g +d) ∈ Ar i th′;

(I ) g ,d ∈ Ar i th′ ⇒ (g ∗d) ∈ Ar i th′;

(I ) g ,d ∈ Ar i th′ ⇒ (g /d) ∈ Ar i th′;

(I ) g ,d ∈ Ar i th′ ⇒ (g −d) ∈ Ar i th′;

(I ) g ∈ Ar i th′ ⇒ (g ) ∈ Ar i th′;

This times, 1+2+3 is not a word of Ar i th′. By opposition (1+(2+3)) ∈ Ar i th′
and ((1+2)+3) ∈ Ar i th′.

The interest of this writing is that we now have some non-ambiguous rules.

2.7 Functions defined inductively

We will need sometimes to defined functions on some sets X defined inductively.
This can be done easily when X admits some non-ambiguous definition.

Theorem 2.5 (Inductively defined function) Let X ⊂ E be a set defined induc-
tively in a non-ambiguous way from a the base set B and from rules R. Let Y be
a set.

For an application f from X to Y is perfectly defined, it suffices that the fol-
lowing are given:
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(B) the value of f (x) for each of the elements x ∈ B;

(I ) for reach rule ri ∈ R, the value of f (x) for x = ri (x1, · · · , xni ) as a function
of the values x1, . . . , xni , f (x1), . . . , and f (xni ).

In other words, informally, if one knows how to “program recursively”, that is to
say “describe in a recursive way the function” then the function is perfectly defined
on the inductive set X .

Proof: The statement above means that there exists a unique application f from
X to Y that satisfies these constraints. It suffices to prove that for every x ∈ X ,
the value of f in x is defined in a unique way. This is proved easily by induction:
This is true for the elements x ∈ B . If this is true in x1, · · · , xni , this is true in x =
ri (x1, · · · , xni ): The definition of X being non-ambiguous, x can obtained only by
the rule ri from x1, · · · , xni . Its value is hence perfectly defined by the constraint for
the rule ri . □

Example 2.22 The factorial function F act from N into N is defined inductively
by

(B) F act (0) = 1;

(I ) F act (n +1) = (n +1)∗F act (n).

Example 2.23 The height h of a labeled binary tree is defined inductively by

(B) h(;) = 0;

(I ) h((g , a,d)) = 1+max(h(g ),h(d)).

Example 2.24 The value v of an arithmetic expression of Ar i th′ is defined in-
ductively by (v is a function that goes from words to the rational numbers)

(B) v(0) = 0;

(B) v(x) = h(x) pour x ∈N ;

(I ) v((g +d)) = v(g )+ v(d);

(I ) v((g ∗d)) = v(g )∗ v(d);

(I ) v((g /d)) = v(g )/v(d), if v(d) ̸= 0;

(I ) v((g −d)) = v(g )− v(d);

(I ) v((g )) = v(g );

where h is the function that, to a word of N maps its value as a rational number:
h is defined inductively by
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(B) h(a) = a for each a ∈ {1,2, . . . ,9};

(I ) h(g a) = 10∗h(g )+a for each a ∈ {0,1,2, . . . ,9}.

We observe that all these definitions are essentially only the translation on how
their can be programmed in some recursive way. The use of non-ambiguous
definitions avoids any ambiguity on the evaluation.

Remark 2.8 For the arithmetic expressions, 1+2∗3 ∈ Ar i th is also ambiguous.
A computer program that would take as input a word of Ar i th and supposed to
return the value of the expression would have to manage the priorities, and un-
derstand that 1+2∗3 is not the result of the multiplication of 1+2 by 3. By using
the definition of Ar i th′, we avoid completely this difficulty, since the expressions
are encoding explicitly how their must be evaluated, and an inductive definition
becomes possible. At first sight, the value of an expression of Ar i th cannot be
defined simply inductively, if only because the value of x + y ∗ z is not obtained
directly from the one of x + y and from z only.

2.8 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
[Arnold & Guessarian, 2005]. For a more general presentation of inductive defini-
tions, and of fix point theorems, we suggest to read [Dowek, 2008].

Bibliography This chapter has been written by using [Dowek, 2008] as well as [Arnold & Guessarian, 2005].



Chapter 3

Propositional calculus

The propositional logic provides means to discuss logical grammatical connectors
such as negation, disjunction or negation, by composition starting some Boolean
propositions. These connectors are sometimes called Aristotelian as they have been
pointed out by Aristotle.

The propositional logic permits essentially to talk about Boolean functions, that
is to say about functions from {0,1}n → {0,1}. Indeed, the variables, that is to say the
propositions can only take two values, true or false.

The propositional calculus has an important position in computer science. A
first reason is because today’s computers are digital and working in binary. This has
the consequence that our processors are essentially made of binary gates of the type
that we will study in this chapter.

From a point of view of expressive power, propositional calculus remains very
limited. For example, one cannot express in propositional calculus the existence of
an object with a given property. The predicate calculus, more general, that we will
study in Chapter 5, provides means to express some properties of objects and rela-
tions between objects, and more generally to formalise the mathematical reasoning.

Since the propositional calculus provides anyway the common basis to numer-
ous logical systems, we will take some time on it in this chapter.

3.1 Syntax

To define formally and properly this language, we must distinguish the syntax from
the semantic: The syntax describes how formulas are written. The semantic de-
scribes their meaning.

Fix a finite or denumerable set P = {p0, p1, · · · } of symbols that are called propo-
sitional variables.

Definition 3.1 (Propositional formulas) The set of propositional formulas F

over P is the language over the alphabet P ∪ {¬,∧,∨,⇒,⇔, (, )} defined induc-
tively by the following rules: ,,,,

33
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(B) it contains P : Every propositional variable is a propositional formula;

(I ) If F ∈F then ¬F ∈F ;

(I ) If F,G ∈F then (F∧G) ∈F , (F∨G) ∈F , (F⇒G) ∈F , and (F⇔G) ∈F .

It is an inductive definition that is valid by the considerations of the previous
chapter: It is a non-unambiguous definition. This can be reformulated by the fol-
lowing proposition, that is sometimes called unique reading theorem of proposi-
tional calculus.

Remark 3.1 The non-ambiguity comes essentially from the explicit parentheses.
We use here the trick in the previous chapter that was considering Ar i th′ instead
of Ar i th to allow to write some expressions without any reading ambiguity.

Proposition 3.1 (Decomposition / Uniqueness reading) Let F be a propositional
formula. Then F is of one, and exactly one of the following forms:

1. a propositional formula p ∈P ;

2. ¬G, where G is a propositional formula;

3. (G∧H) where G and H are some propositional formulas;

4. (G∨H) where G and H are some propositional formulas;

5. (G⇒H) where G and H are some propositional formulas;

6. (G⇔H) where G and H are some propositional formulas.

Moreover, in the cases 2., 3., 4., 5. and 6., there is unicity of the formula G and
unicity of the formula H with these properties.

The fact that a formula can always be decomposed into one of the 6 cases above
is easy to establish inductively. The unicity of the decomposition follows from the
following exercise:
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p ¬p q p∨q p∧q p⇒q p⇔q
0 1 0 0 0 1 1
1 0 0 1 0 0 0
0 1 1 1 0 1 0
1 0 1 1 1 1 1

Figure 3.1: Truth value.

Exercise 3.1 Prove that the previous inductive definition is non-ambiguous,
that is that G and H are uniquely defined in each of the cases above.

We can proceed in the following way.

• Prove that in any formula F the number of open parentheses is equal
to the number of closing parentheses.

• Prove that in any word M prefix of the word F , we have o(M) ≥ f (M),
where o(M) is the number of open parentheses, and f (M) the number
of closing parentheses.

• Prove that in any formula F whose first symbol is some open paren-
thesis, and for any word M proper prefix of F , we have o(M) > f (M).

• Prove that any word M proper prefix of F is not a formula.

• Deduce the result.

We call subformula of F a formula that appears in the recursive decomposition
of F .

3.2 Semantic

We are going now to define the semantic of a propositional formula, that is to say,
the meaning that is assigned to such a formula.

The truth value of a formula is defined as the interpretation of this formula, after
having fixed the truth value of the propositional variables: The principle is to inter-
pret the symbols ¬, ∨, ∧, ⇒, ⇔ by the logic neg ati on, the logical or (also called
disjunction), the logical and (also called conjunction), the implication and the dou-
ble implication (also called equivalence) ).

Formally,

Definition 3.2 (Valuation) A valuation is a distribution of truth value to the
propositional variables, that is to say a function from P to {0,1}.

In all what follows, 0 represents false, and 1 represents true.
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The conditions in the following definition are often represented as a truth value:
See Figure 3.1.

Proposition 3.2 Let v be a valuation.
By Theorem 2.5, there exists a unique function v defined on all F that satis-

fies the following conditions:

(B) v extends v: for every propositional variable p ∈P , v(p) = v(p);

(I ) the negation is interpreted by logic negation:
if F is of the form ¬G, then v(F ) = 1 if and only if v(G) = 0;

(I ) ∧ is interpreted as the logical and:
if F is of the form G∧H, then v(F ) = 1 if and only inf v(G) = 1 and v(H) = 1;

(I ) ∨ is interpreted as the logical or:
if F is of the form G∨H, then v(F ) = 1 if and only if v(G) = 1 or v(H) = 1;

(I ) ⇒ is interpreted as the logical implication:
if F is of the form G⇒H, then v(F ) = 1 if and only if v(H) = 1 or v(G) = 0;

(I ) ⇔ is interpreted as the logical equivalence:
if F is of the form G⇔H, then v(F ) = 1 if and only if v(G) = v(H).

We write v |=F for v(F ) = 1, and we say that v is a model of F , or that v satisfies
F . We write v ̸|=F otherwise. The value of v(F ) for the valuation v is called the truth
value of F on v .

3.3 Tautologies, equivalent formulas

We would like to classify the formulas according to their interpretations. A particular
class of formulas are those that are always trues, and that are called the tautologies.

Definition 3.3 (Tautology) A tautology is a formula F that is satisfied by any
valuation. We write in this case |=F .

Definition 3.4 (Equivalence) Two formulas F and G are said to be equivalent
if for every valuation v, v(F ) = v(G). We write in this case F≡G.

Example 3.1 The formula p ∨¬p is a tautology. The formulas p and ¬¬p are
equivalent.

Remark 3.2 It is important to understand that ≡ is a symbol that is used to write
a relation between formulas, but that F≡G is not a propositional formula.
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Exercise 3.2 Prove that ≡ is some equivalence relation on the formulas.

3.4 Some elementary facts

Exercise 3.3 Prove that for any formulas F and G, the following formulas
are tautologies:

(F⇒F ),

(F ⇒ (G ⇒ F )),

(F ⇒ (G ⇒ H)) ⇒ ((F ⇒G) ⇒ (F ⇒ H)).

Exercise 3.4 [Idempotence] Prove that for any formula F we have the equiv-
alences:

(F ∨F )≡F,

(F ∧F ) ≡ F.

Exercise 3.5 [Associativity] Prove that for any formulas F , G, H we have
the equivalences:

(F∧(G ∧H)) ≡ ((F ∧G)∧H),

(F∨(G ∨H)) ≡ ((F ∨G)∨H).

Because of associativity, one often denotes F1∨F2∨·· ·∨Fk for (((F1∨F2)∨F3) · · ·∨
Fk ), and F1 ∧F2 ∧·· ·∧Fk for (((F1 ∧F2)∧F3) · · ·∧Fk ).

Remark 3.3 Exactly as we do for arithmetic expression: We write 1+ 2+ 3 for
((1+2)+3) as well as for (1+(2+3)). See all the discussions on Ar i th and Ar i th′
in the previous chapter.
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Exercise 3.6 [Commutativity] Prove that for any formulas F and G we have
the equivalences:

(F∧G) ≡ (G ∧F ),

(F∨G) ≡ (G ∨F ).

Exercise 3.7 [Distributivity] Prove that for any formulas F , G, H we have
the equivalences:

(F∧(G∨H)) ≡ ((F ∧G)∨ (F ∧H)),

(F ∨ (G ∧H)) ≡ ((F ∨G)∧ (F ∨H)).

Exercise 3.8 [Morgan’s law] Prove that for any formulas F and G we have
the equivalences:

¬(F ∧G) ≡ (¬F ∨¬G),

¬(F ∨G) ≡ (¬F ∧¬G).

Exercise 3.9 [Absorption] Prove that for any formulas F and G we have the
equivalences:

(F∧(F∨G)) ≡ F,

(F ∨ (F ∧G)) ≡ F.

3.5 Replacement of a formula by some equivalent for-
mula

We know now some equivalences between formulas, but we are going to convince
ourselves that one can use these equivalences in a compositional way: If one re-
places in some formula some subformula by some equivalent formula, then one
obtains an equivalent formula.

3.5.1 A simple remark

Observe first that the truth value of a formula is depending only on the propositional
formulas that appear in the formula: When F is a formula, we will write F (p1, · · · , pn)
to say that the formula F is written with the propositional formulas p1, · · · , pn only.
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Proposition 3.3 Let F (p1, · · · , pn) be a formula. Let v be some valuation. The
truth value of F on v is depending only on the value of v on {p1, p2, · · · , pn}.

Proof: The property can be established easily by structural induction. □

3.5.2 Substitutions

We have to defined what means replacing p by G in a formula F , denoted by F (G/p).
This provides the rather pedantic definition, but we have to go through this:

Definition 3.5 (Substitution of p by G in F ) The formula F (G/p) is defined by
induction on the formula F :

(B) If F is the propositional formula p, then F (G/p) is the formula G;

(B) If F is a propositional formula q, with q ̸= p, then F (G/p) is the formula
F ;

(I ) If F is of the form ¬H, then F (G/p) is the formula ¬H(G/p);

(I ) If F is of the form (F1∨F2), then F (G/p) is the formula (F1(G/p)∨F2(G/p));

(I ) If F is of the form (F1∧F2), then F (G/p) is the formula (F1(G/p)∧F2(G/p));

(I ) If F is of the form (F1 ⇒ F2), then F (G/p) is the formula (F1(G/p) ⇒ F2(G/p));

(I ) If F is of the form (F1 ⇔ F2), then F (G/p) is the formula (F1(G/p) ⇔ F2(G/p)).

3.5.3 Compositionality

We obtain the promised result: If one replaces in a formula some subformula by
some equivalent formula, then one obtains an equivalent formula;

Proposition 3.4 Let F,F ′,G and G ′ be formulas. Let p be a propositional vari-
able.

• If F is a tautology, then F (G/p) is also a tautology.

• If F ≡ F ′, then F (G/p) ≡ F ′(G/p).

• If G ≡G ′ then F (G/p) ≡ F (G ′/p).

Exercise 3.10 Prove the result by structural induction.

3.6 Complete systems of connectors
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Proposition 3.5 Every propositional formula is equivalent to a propositional
formula that is built only with the connectors ¬ and ∧.

Proof: This results from a proof by induction on the formula. This is true for the
formulas that correspond to some propositional variable. Suppose the property true
for the formulas G and H , that is to say suppose that G (respectively H) is equivalent
to some formula G ′ (respectively H ′) built only with the connectors ¬ and ∧.

If F is of the form ¬G , then F is equivalent to ¬G ′, and the induction hypothesis
is preserved.

If F is of the form (G ∧ H), then F is equivalent to (G ′∧ H ′), and the induction
hypothesis is preserved.

If F is of the form (G ∨ H), by using the second Morgan’s law, and the fact that
K ≡¬¬K to eliminate the double negations, we obtain that F ≡¬(¬G ′∧¬H ′), which
is indeed built using only the connectors ¬ and ∧.

If F is of the form (G ⇒ H), then F is equivalent to (¬G ′∨H ′) that is equivalent
to a formula build uniquely with the connectors ¬ and ∧ by the previous cases.

If F is of the form (G ⇔ H), then F is equivalent to (G ′ ⇒ H ′)∧ (H ′ ⇒ G ′) that is
equivalent to a formula build uniquely with the connectors ¬ and ∧ by the previous
cases. □

A set of connectors with the above property for {¬,∧} is called a complete system
of connectors.

Exercise 3.11 Prove that {¬,∨} is also a complete system of connectors.

Exercise 3.12 Give a binary logic connector that, alone, constitutes a com-
plete system of connectors.

3.7 Functional completeness

Suppose that P = {p1, p2, · · · , pn} is finite. Let V be the set of valuations on P . Since
a valuation is a function from {1,2, . . . ,n} to {0,1}, V contains 2n elements.

Each formula F over P can be seen as a function from V to {0,1}, that is called
its truth value of F : This function is the function that, to a valuation v associates the
truth value of this formula on the valuation.

There are 22n
functions from V to {0,1}. The question that one may ask is to know

if all these functions can be written as formulas. The answer is positive:

Theorem 3.1 (Functional completeness) Suppose P = {p1, p2, · · · , pn} is finite.
Let V be the set of valuations over P . Every function f from V to {0,1} is the truth
value of some formula F over P .
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Proof: The proof is done by recurrence on the number of propositional variables
n.

For n = 1, there are four functions from {0,1}1 to {0,1}, that are represented by
the formulas p, ¬p, p ∨¬p, p ∧¬p.

Suppose that the property is true for n − 1 propositional variables. Consider
P = {p1, · · · , pn} and let f be a function from {0,1}n to {0,1}. Each valuation v ′
over {p1, p2, · · · , pn−1} can be seen as the restriction of a valuation on {p1, · · · , pn}.
Let f0 (respectively f1) the restriction of f to the valuation v such that v(pn) = 0
(resp. v(pn) = 1). The functions f0 and f1 are some functions defined on valuations
over {p1, · · · , pn−1} to {0,1} and can be represented by formulas G(p1, · · · , pn−1) and
H(p1, · · · , pn−1) respectively by recurrence hypothesis. The function f can then be
represented by the formula

(¬pn ∧G(p1, · · · , pn−1))∨ (pn ∧H(p1, · · · , pn−1))

which proves the recurrence hypothesis at rank n. □

Remark 3.4 Our attentive reader will have observed that the Proposition 3.5 can
be seen as a consequence of this proof.

3.8 Normal forms

3.8.1 Conjunctive and disjunctive normal forms

One often seeks to transform the formulas into some equivalent form as simple as
possible.

Definition 3.6 A literal is a propositional formula or its negations, i.e. of the
form p, or ¬p, for p ∈P .

Definition 3.7 A disjunctive normal form is a disjunction F1 ∨F2 · · · ∨Fk of k
formulas, k ≥ 1 where each formula Fi , 1 ≤ i ≤ k is a conjunction G1∧G2 · · ·∧Gℓ

of ℓ literals (ℓ can possibly depend on i ).

Example 3.2 The following formulas are in disjunctive normal form

((p ∧q)∨ (¬p ∧¬q)

((p ∧q ∧¬r )∨ (q ∧¬p))

(p ∧¬q)
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Definition 3.8 A conjunctive normal form is a conjunction F1 ∧F2 · · ·∧Fk of k
formulas, k ≥ 1 where each formula Fi , 1 ≤ i ≤ k is a disjunction G1 ∨G2 · · ·∨Gℓ

of ℓ literals (ℓ can possibly depend on i ).

Example 3.3 The following formulas are in conjunctive normal form

(¬p ∨q)∧ (p ∨¬q)

(¬p ∨q)∧¬r

(¬p ∨q)

Theorem 3.2 Every formula on a finite number of propositional variables is
equivalent to some formula in conjunctive normal form.

Theorem 3.3 Every formula on a finite number of propositional variables is
equivalent to some formula in disjunctive normal form.

Proof: These two theorems are proved by recurrence on the number n of propo-
sitional formulas.

In the case where n = 1, we have already considered in the previous proofs some
formulas covering all the possible cases, and which are actually both in conjunctive
normal form and disjunctive normal form.

We suppose the property true for n−1 propositional variables. Let f be the truth
value associated to the formula F (p1, · · · , pn). As in the previous proof, we can build
some formula that represents f , by writing a formula of the form

(¬pn ∧G(p1, · · · , pn−1))∨ (pn ∧H(p1, · · · , pn−1)).

By recurrence hypothesis, G and H are equivalent to formulas in disjunctive normal
form

G ≡ (G1 ∨G2 ∨·· ·∨Gk )

H ≡ (H1 ∨H2 ∨·· ·∨Hℓ)

We can then write

(¬pn ∧G) ≡ (¬pn ∧G1)∨ (¬pn ∧G2)∨·· ·∨ (¬pn ∧Gk )

which is in disjunctive normal form and

(pn ∧H) ≡ (pn ∧H1)∨ (pn ∧H2)∨·· ·∨ (pn ∧Hk )

which is also in disjunctive normal form. The function f is hence represented by
the disjunction of these two formulas, and hence by a formula in disjunctive normal
form.
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If we want to obtain F in conjunctive normal form, then the hypothesis induc-
tion produces two conjunctive normal form G and H . The equivalence that is used
is then

F ≡ ((¬pn ∨H)∧ (pn ∨G)).

□

Remark 3.5 Our attentive reader would have observed that the previous theo-
rem, as well as Proposition 3.5 can also be seen as the consequences of this proof.

3.8.2 Transformation methods

In practise, there exist two main methods to determine the disjunctive normal form,
or the conjunctive normal form of a given formula. The first method consists in
transforming the formula by successive equivalence by using the following rules ap-
plied in this order:

1. elimination of connectors ⇒ by

(F ⇒G) ≡ (¬F ∨G)

2. entering the negation in the innermost position:

¬(F ∧G) ≡ (¬F ∨¬G)

¬(F ∨G) ≡ (¬F ∧¬G)

3. distributivity of ∨ and ∧ one with respect to the other

F ∧ (G ∨H)) ≡ ((F ∧H)∨ (F ∧H))

F ∨ (G ∧H)) ≡ ((F ∨H)∧ (F ∨H))

Example 3.4 Put the formula ¬(p ⇒ (q ⇒ r ))∨ (r ⇒ q) in disjunctive and con-
junctive normal form.

We use the successive equivalences

¬(¬p ∨ (¬q ∨ r ))∨ (¬r ∨q)

(p ∧¬(¬q ∨ r ))∨ (¬r ∨q)

(p ∧q ∧¬r )∨ (¬r ∨q)

that is a disjunctive normal form.

(p ∧q ∧¬r )∨ (¬r ∨q)

(p ∧¬r ∨q)∧ (¬r ∨q)
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The other method consists in determining the valuations v such that v(F ) = 1,
and to write a disjunction of conjunctions, each conjunction corresponding to a val-
uation for which v(F ) = 1.

The determination of a conjunctive normal form follows the same principle, by
exchanging the valuations that value 1 with the valuations giving the value 0, by ex-
changing conjunctions and disjunctions.

Exercise 3.13 Prove that the conjunctive and disjunctive normal form of a
formula can be exponentially longer than the size of the formula. The size
of a formula is defined as the length of the formula seen as a word.

3.9 Compactness theorem

3.9.1 Satisfaction of a set of formulas

We are given this times a set Σ of formulas. One wants to know when it is possible to
satisfy all the formulas of Σ.

Let’s start by fix the terminology.

Definition 3.9 Let Σ be a set of formulas.

• A valuation satisfies Σ if it satisfies each formula of Σ. One also says in
that case that this valuation is a model of Σ.

• Σ is said consistent (this is also called satisfiable) if it has a model. In
other words, if there exists some valuation that satisfies Σ.

• Σ is said inconsistent, or contradictory, in the opposite case

Definition 3.10 (Consequence) Let F be a formula. The formula F is said to a
consequence of Σ if every model of Σ is a model of F . We then write Σ|=F .

Example 3.5 The formula q is a consequence of the set of formulas {p, p ⇒ q}.
The set of formulas {p, p ⇒ q,¬q} is inconsistent.

We can get convinced first of the following results, that follows from a game on
definitions.

Proposition 3.6 Every formula F is a consequence of a set Σ of formulas if and
only if Σ∪ {¬F } is inconsistent.

Proof: If every valuation that satisfies Σ satisfies F , there there is no valuation
satisfying Σ∪ {¬F }. Conversely, by contradiction: If there is a valuation that satisfies
Σ and not satisfying F , then this valuation satisfies Σ and ¬F . □
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Exercise 3.14 Prove that for any formulas F and F ′, {F } |= F ′ if and only if
F ⇒ F ′ is a tautology.

More fundamentally, we ave the following rather surprising and fundamental
result.

Theorem 3.4 (Compactness theorem (first version)) Let Σ be a set of formulas
built on a denumerable set P of propositional variables.

Then Σ is consistent if and only if every finite subset of Σ is consistent.

Remark 3.6 Observe that the hypothesis P countable is not necessary, if we ac-
cept to use Zorn hypothesis (the axiom of choice). We will restrict to the case
where P is denumerable in all the proofs that follow.

Actually, this theorem can be reformulated as follows:

Theorem 3.5 (Compactness theorem (second version)) Let Σ be a set of for-
mulas built on a denumerable set P of propositional variables.

Then Σ is inconsistent if and only if Σ has some finite inconsistent subset.

Or even under the following form:

Theorem 3.6 (Compactness theorem (third version)) For every setΣ of propo-
sitional formulas, and for every propositional formula F built on a denumerable
set P of propositional variables, F is a consequence of Σ if and only if F is a con-
sequence of a finite subset of Σ.

The equivalence of the three formulations is a simple exercise of manipulations
of definitions. We will prove the first version of the theorem.

One of the implication is trivial: If Σ is consistent, then every subset of Σ is con-
sistent, and in particular the finite subsets.

We will provide two proofs of the other implication.
A first proof that makes references to notions of topologies, in particular com-

pactness, and that is addressed to readers who know theses notion, and who like
topological arguments.

Proof:[Topological proof] The topological space {0,1}P (with the product topol-
ogy) is a compact space, since it is obtained as the product of compact spaces (Ty-
chonoff theorem).

For every propositional formula F ∈ Σ, the set F of the valuations which satisfy
it is open in {0,1}P , as the truth value of a formula is depending only from a finite
number of propositional variables, namely those appearing in the formula. It is also
closed, since those that are not satisfying F are those satisfying t ¬F .

The hypothesis of the theorem implies that any finite intersection of F for F ∈ Σ
is non-empty. Since {0,1}P is compact, the intersection of all the F for F ∈Σ is hence
non-empty. □
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Here is a proof that avoid topology.
Proof:[Direct proof] Consider P = {p1, p2, · · · , pk , · · · } an enumeration of P .
We will prove the following lemma: Suppose that there exists some applica-

tion v from {p1, p2, · · · , pn} to {0,1} such that any finite subset of Σ has a model
in which p1, · · · , pn take the values v(p1), . . . , v(pn). Then v can be extended to
{p1, p2, · · · , pn+1} with the same property.

Indeed, if v(pn+1) = 0 does not fit, then there exists some finite set U0 of Σ that
cannot be satisfied when p1, · · · , pn , pn+1 take respective values v(p1), . . . , v(pn) and
0. If U is any finite subset of Σ, then from the hypothesis made on v , U0 ∪U has a
model in which p1, · · · , pn take the values v(p1), · · · , v(pn). In this model, the propo-
sition pn+1 takes the value 1. In other words, every finite subset U of Σ has a model
in which p1, · · · , pn , pn+1 take the respective values v(p1), . . . , v(pn) and 1. Stated in
another way, either v(pn+1) = 0 is fine with the property, in which case, we can fix
v(pn+1) = 0, or v(pn+1) = 0 is not fine, in which case, we can set v(pn+1) = 1 which is
fine with the property.

By using this lemma, we hence define some valuation v such that, by recurrence
over n, for every n, every finite set of Σ has a model in which p1, · · · , pn take the
values v(p1), . . . , v(pn).

It follows that v satisfies Σ: Indeed, let F be a formula of Σ. F is depending only
a finite set of propositional formulas pi1 , pi2 , · · · , pik (the one appearing in F ). By
considering n = max(i1, i2, · · · , ik ), each of these propositional variables pi j is among
{p1, · · · , pn}. We then know that the finite subset {F } reduced to the formula F admits
a model in which p1, · · · , pn take the value v(p1), . . . , v(pn), i.e. F is satisfied by v .

□

3.10 Exercises

Exercise 3.15 Relate the equivalent propositions:

1. ¬(p ∧q)

2. ¬(p ∨q)

3. p → (¬q)

4. ¬(p → q)

1. (¬p ∧¬q)

2. q → (¬p)

3. (¬p ∨¬q)

4. p ∧ (¬q)

Exercise 3.16 By adding two numbers whose binary expression uses at most
two digits, say ab and cd, we obtain a number of at most three digits pqr .
For example, 11+01 = 100. Give an expression of p, q and r as a function of
a,b,c and d using the usual connectors.
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Exercise 3.17 (solution on page 229) Let F and G two formulas with no
propositional variable in common. Prove that the two following properties
are equivalent:

• The formula (F ⇒G) is a tautology;

• At least one of ¬F and G is a tautology.

*Exercise 3.1 [Interpolation theorem] Let F and F ′ such that F ⇒ F ′ is a tautol-
ogy. Prove that there exists some propositional formula C , whose propositional
variables appear in F and F ′, such that F ⇒ C and C ⇒ F ′ are two tautologies
(one can reason on recurrence on the number of variables that have at least one
occurrence in F without any in F ′).

Exercise 3.18 (solution on page 229) [Application of compactness to graph
colouring] A graph G = (V ,E) is k-colorable if there exists some function f
from V in {1,2, . . . ,k} such that for all (x, y) ∈ E, f (x) ̸= f (y). Prove that a
graph is k-colorable if and only if any of its finite sub-graphs is k-colorable
.

*Exercise 3.2 [Applications of compactness to group theory] A group G is said
to be totally ordered if we have on G some total order relation such that a ≤ b
implies ac ≤ bc and ca ≤ cb for all a,b,c ∈G. Prove that for some Abelian group
G can be ordered, it is sufficient and necessary that any subgroup of G spanned
by a finite set elements of G can be ordered.

3.11 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest [Cori & Lascar, 1993a]
and [Lassaigne & de Rougemont, 2004].

Bibliography This chapter has been written by using essentially the books [Cori & Lascar, 1993a]
and [Lassaigne & de Rougemont, 2004].
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Chapter 4

Proofs

The objective of this chapter is to start to address the fundamental following ques-
tion: what is a demonstration (i.e. a (mathematical) proof ).

To to this, more precisely, we will focus on this chapter on the following problem:
Given some propositional formula F , how to decide if F is a tautology? A tautology
is also called a theorem.

This will lead us to describe some particular algorithms.

4.1 Introduction

A first method to solve this problem is the one that we have used in the previous
chapter: If F is of the form F (p1, · · · , pn), we can test for each of the 2n valuations v ,
i.e. for the 2n functions from {1,2, . . . ,n} to {0,1}, if v is indeed a model of F . If this
is the case, then F is a tautology. In any other case, F is not a tautology. It is easy to
program such a method in your favorite programming language.

The good news is that this method exists: The problem to determine if a given
formula is a tautology is decidable, using the terminology that we will see in the next
chapters.

Remark 4.1 This observation can seem strange, and, in some sense, to expect lit-
tle, but we will see that when we consider more general logic, even simple logic,
this becomes problematic: There does not always exist some algorithm to deter-
mine if a given formula F is a tautology.

However, this method is particularly inefficient. It has the main inconvenient to
guarantee that when F is a tautology, we will do 2n times a similar test of type “is the
valuation v a model of F ?”. When n is big, 2n explodes very quickly: If this method
can indeed be programmed, it is in practise useless, since it takes a huge time, as
soon as one considers some formulas F with a high number of variables.

Let’s then come back to our problem: One can say that in the classical reasoning
in mathematics, the usual method to prove that some assertion is a theorem is to
prove it.

49
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If one wants to do better than the previous exhaustive method, there are two
angles of attacks. The first angle of attack is to try to come close to the notion of
demonstration in the usual reasoning: Proof methods in the spirit of the coming
sections will appear. The second angle of attack is to try to produce algorithms as
efficient as possible: Methods such as proof!by resolution method or tableau method
then appear.

In general, one expects that a proof method is always valid: It produces only cor-
rect deductions. In any case, the question of the completeness of the proof method
makes sense: Can all the theorems (tautology) be proved using this proof method?

We will see in what follows, four deductions systems that are valid and com-
plete: The proofs à la Hilbert, the natural deduction, the resolution method and
the tableau method. We will prove the validity and the completeness only for the
tableau method. Every time, we will denote by ⊢ the underlying notion of proof:
T⊢F means that the formula F can be proved starting from a set of propositional
formulas T . We write ⊢ T if ;⊢ T .

At first sight, one needs a different symbol ⊢ for each notion of demonstration.
However, the validity and completeness theorem that follow will prove that, ev-

ery time, what is provable for each notion of demonstration is exactly the same, that
is to say the tautologies of the propositional calculus.

In summary, the symbol |= and the symbol ⊢ denotes exactly the same notion:
For each of the variants of ⊢ mentioned in what follows, we have ⊢ F if and only if
|= F , that is to say if and only if F is a tautology.

4.2 Proofs à la Frege and Hilbert

In this deduction system, we start from a set of axioms from propositional logic, that
are tautologies, and we use a unique deduction rule, the modus ponens, also called
cut rule that aims to capture a very usual type of reasoning in mathematics.

The modus ponens states that from a formula F and from a formula F ⇒ G , we
deduce G .

Graphically:
F (F ⇒G)

G

Example 4.1 For example, starting from (A∧B) and from (A∧B) ⇒C we deduce
C .

We consider then a set of axioms, that are actually some instances of a finite
number of axioms.

Definition 4.1 (Instance) A formula F is said to be an instance of a formula
G if F is obtained by substituting certain propositional variables in G by some
formulas Fi .
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Example 4.2 The formula ((C ⇒ D) ⇒ (¬A ⇒ (C ⇒ D))) is an instance of (A ⇒
(B ⇒ A)), by taking (C ⇒ D) for A, and ¬A for B.

Definition 4.2 (Axioms of boolean logic) An axiom of Boolean logic is any in-
stance of the following formulas:

1. (X1 ⇒ (X2 ⇒ X1)) (axiom 1 for the implication);

2. ((X1 ⇒ (X2 ⇒ X3)) ⇒ ((X1 ⇒ X2) ⇒ (X1 ⇒ X3))) (axiom 2 for the
implication);

3. (X1 ⇒¬¬X1) (axiom 1 for the negation);

4. (¬¬X1 ⇒ X1) (axiom 2 for the negation);

5. ((X1 ⇒ X2) ⇒ (¬X2 ⇒¬X1)) (axiom 3 for the negation);

6. (X1 ⇒ (X2 ⇒ (X1 ∧X2))) (axiom 1 for the conjunction);

7. ((X1 ∧X2) ⇒ X1) (axiom 2 for the conjunction);

8. ((X1 ∧X2) ⇒ X2) (axiom 3 for the conjunction);

9. (X1 ⇒ (X1 ∨X2)) (axiom 1 for the disjunction);

10. (X2 ⇒ (X1 ∨X2)) (axiom 2 for the disjunction);

11. ((((X1 ∨X2)∧ (X1 ⇒C ))∧ (X2 ⇒C )) ⇒C ) (axiom 3 for the disjunction).

We obtain a notion of demonstration.

Definition 4.3 (Demonstration by modus ponens) Let T be a set of proposi-
tional formulas, and F be some propositional formula. A proof (by modus po-
nens) of F from T is a finite sequence F1,F2, · · · ,Fn of propositional formulas
such that Fn is equal to F , and for all i , either Fi is in T , or Fi is some axiom of
Boolean logic, or Fi is obtained by modus ponens from two formulas F j ,Fk with
j < i and k < i .

We write T⊢F if F is provable (by modus ponens) from T . We write ⊢ F if ;⊢ F ,
and we say that F is provable (by modus ponens)

Example 4.3 Let F,G , H three propositional formulas. Here is a proof of (F ⇒ H)
from {(F ⇒G), (G ⇒ H)}:

• F1 : (G ⇒ H) (hypothesis);

• F2 : ((G ⇒ H) ⇒ (F ⇒ (G ⇒ H))) (instance of axiom 1.);

• F3 : (F ⇒ (G ⇒ H)) (modus ponens from F1 and F2);
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• F4 : ((F ⇒ (G ⇒ H)) ⇒ ((F ⇒G) ⇒ (F ⇒ H))) (instance of axiom 2.);

• F5 : ((F ⇒G) ⇒ (F ⇒ H)) (modus ponens from F3 and F4);

• F6 : (F ⇒G) (hypothesis);

• F7 : (F ⇒ H) (modus ponens from F6 and F5).

Exercise 4.1 (solution on page 230) Prove (F ⇒ F ).

In the following exercises, you can use the previous exercises to solve each of the
questions.

Exercise 4.2 (solution on page 230) [Deduction theorem] Let T be a family
of propositional formulas, and let F and G be two propositional formulas.
Prove that T ⊢ F ⇒G is equivalent to T ∪ {F } ⊢G.

Exercise 4.3 (solution on page 231) Prove the following assertions:

• T ∪ {F } ⊢G is equivalent to T ∪ {¬G} ⊢¬F .

• If we have both T ⊢ F and T ⊢ ¬F , then we have T ⊢ G for any for-
mula G.

Exercise 4.4 (solution on page 231) Prove that {(¬G ⇒ G)} ⊢ G, for any
formula G.

Exercise 4.5 (solution on page 231) Prove that if we have both T ∪ {F } ⊢G
and T ∪ {¬F } ⊢G then we have T ⊢G.
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Exercise 4.6 Prove the following assertions:

• {F } ⊢¬¬F

• {F,G} ⊢ F ∨G

• {¬F } ⊢¬(F ∧G)

• {¬G} ⊢¬(F ∧G)

• {F } ⊢ F ∨G

• {G} ⊢ F ∨G

• {¬F,¬G} ⊢¬(F ∨G)

• {¬F } ⊢ (F ⇒G)

• {G} ⊢ (F ⇒G)

• {F,¬G} ⊢¬(F ⇒G)

Exercise 4.7 For v some partial function from {Xi } in {0,1}, we set

TV = {Xi |v(Xi ) = 1}∪ {¬Xi |v(Xi ) = 0}.

Prove that any formula H whose variables are among the domain of V , the
relation v |= H implies TV ⊢ H and the relation v ̸|= H implies TV ⊢¬H.

This proof method is valid: By checking that all the axioms are tautologies, it is
easy to get convinced by recurrence on the length of a proof that the following results
are true.

Theorem 4.1 (Validity) Every provable propositional formula is a tautology.

What is less trivial, and more interesting is the converse: Any tautology has a
proof of this type.

Theorem 4.2 (Completeness) Every tautology is provable (by modus ponens).

We will not do the proof of this result here, but this corresponds to the following
exercise:
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Exercise 4.8 Prove this result by using the previous exercises: The key is the
possibility to reason by cases (Exercise 4.5) and the Exercise 4.7 which make
the relation between semantic and syntax.

We have just described a deduction system that is very closed to the usual notion
of proof in mathematics. However, this system is not easily exploitable to build an
algorithm that would determine if a given formula F is a tautology.

This is easy to be convinced of that by trying to do the previous exercises, and by
observing how hard it is to find a proof using this method.

4.3 Demonstrations by natural deduction

4.3.1 Rules from natural deduction

The previous notion of demonstration is in practise hard to use. Indeed, in the pre-
vious system, we are, somehow, constrained to keep the hypotheses during all the
demonstration. We can not easily express some however common reasoning. We
want to prove that A ⇒ B , supposing A and proving B under this hypothesis. This
remarks leads to introduce a notion of couple made of a finite set of hypotheses and
a conclusion. Such a couple is called a sequent.

We consider in this section that the propositional formulas also include ⊥, inter-
preted by false, and ⊤ interpreted by true.

Definition 4.4 (Sequent) A sequent is a couple Γ ⊢ A, where Γ is a finite set of
propositional formulas, and A is a propositional formula.

The deduction rules of natural deduction are then the following:

Γ⊢ A axiom for each A ∈ Γ

Γ⊢⊤ ⊤-intro

Γ⊢⊥
Γ⊢ A ⊥-elim

Γ⊢ A Γ⊢ B
Γ⊢ A∧B ∧-intro

Γ⊢ A∧B
Γ⊢ A ∧-elim

Γ⊢ A∧B
Γ⊢ B ∧-elim

Γ⊢ A
Γ⊢ A∨B ∨-intro

Γ⊢ B
Γ⊢ A∨B ∨-intro

Γ⊢ A∨B Γ, A ⊢C Γ,B ⊢C
Γ⊢C ∨-elim
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Γ, A ⊢ B
Γ⊢ A ⇒ B ⇒-intro

Γ⊢ A ⇒ B Γ⊢ A
Γ⊢ B ⇒-elim

Γ, A ⊢⊥
Γ⊢¬A ¬-intro

Γ⊢ A Γ⊢¬A
Γ⊢⊥ ¬-elim

Γ⊢ A∨¬A exclusive middle

The rules⊤-intro, ∧-intro, ∨-intro, ⇒-intro, ¬-intro, ∀-intro and ∃-intro are termed
introduction rules and the rules ⊥-elim, ∧-elim, ∨-elim, ⇒-elim, ¬-elim, ∀-elimand
∃-elimare termed elimination rules. The rules of natural deduction are hence classi-
fied in four groups: the introduction rules, the elimination rules, the axiom rule and
the exclusive middle rule.

A demonstration of a sequent Γ⊢ A is a derivation of this sequent, that is to say
a tree whose nodes are labeled by a sequent, whose root is labeled by Γ ⊢ A, and
such that if a node is labeled by some sequent∆⊢ B , then its children are labeled by
sequent Σ1 ⊢C1, . . . ,Σn ⊢Cn such that there exists some natural deduction rule, that
permits to deduce ∆⊢ B of Σ1 ⊢C1, . . . ,Σn ⊢Cn .

A sequent Γ ⊢ A is hence provable if there exists some demonstration of this
sequent.

4.3.2 Validity and completeness

We can prove the following results:

Theorem 4.3 (Validity) For any set of propositional formulasΓ and for any propo-
sitional formula A, if Γ⊢ A is provable, then A is a consequence of Γ.

Theorem 4.4 (Completeness) Let Γ be any set of propositional formulas. Let A
be some propositional formula that is a consequence of Γ.

Then Γ⊢ A is provable.

4.4 Proofs by resolution

We present briefly the notion of proof by resolution. This proof methods is maybe
less natural, but is simpler to be implemented on a computer.

The resolution applies to a formula in conjunctive normal form. Since any propo-
sitional formula can be put in an equivalent conjunctive normal form, this is not
restrictive.

Remark 4.2 At least in appearance. Indeed, it requires to be more clever than in
the previous chapter to transform a propositional formula in conjunctive nor-
mal form, if we want to avoid the problem of the explosion of the size of the
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formulas, and if we want to implement efficiently the method.

We call clause a disjunction of literals. Remember that a literal is a propositional
variable or its negation. We represent a clause c by the set of the literals on which
the disjunction applies.

Example 4.4 We hence write {p,¬q,r } instead of p ∨¬q ∨ r .

Given some literal u, we write u for the literal equivalent to ¬u: In other words,
if u is the propositional variable p, u values ¬p, and if u is ¬p, u is p. Finally, we
introduce some empty clause, denoted by □, whose value is 0 for any valuation.

Definition 4.5 (Resolvant) Let C1, C2 be two clauses. The clause C is a resolvent
of C1 and C2 if there exists some literal u such that:

• u ∈C1;

• u ∈C2;

• C is given by (C1\{u})∪ (C2\{u}).

Example 4.5 The clauses {p, q,r } and {¬r, s} have {p, q, s} as a resolvent.

Example 4.6 The clauses {p, q} and {¬p,¬q} have two resolvents, namely {q,¬q}
and {p,¬p}. The clauses {p} and {¬p} have the resolvent □.

This provides a notion of demonstration:

Definition 4.6 (Proof by resolution) Let T be a set of clauses. A proof by reso-
lution of T is a finite sequence F1,F2, · · · ,Fn of clauses such that Fn is equal to □,
and for every i , either Fi is a clause in T , or Fi is a resolvent of two clauses F j ,Fk

with j < i and k < i .

Remark 4.3 The modus ponens, at the heart of the previous Hilbert-Frege proof
systems, consists in stating that from a formula F and a formula (F ⇒ G), we
deduce G. If we consider that the formula (F ⇒ G) is equivalent to the formula
(¬F∨G), the modus ponens can also be seen as stating that from a formula F and
a formula (¬F ∨G), we deduce G, which reads similar to the concept of resolvent.
The resolvent of { f } and of {¬ f , g } is {g }.

In some way, the resolvent is some generalized modus ponens, even if this
analogy is only an analogy, and if a proof in a given proof system can not be
translated directly into another.



4.5. PROOFS BY TABLEAU METHOD 57

Exercise 4.9 Prove by resolution

T = {{¬p,¬q,r }, {¬p,¬q, s}, {p}, {¬s}, {q}, {t }}.

This proof method is valid (easy direction).

Theorem 4.5 (Validity) Every clause that appears in a resolution proof of t is a
consequence of T .

Actually, to prove a formula, one reasons in general in this proof method on its
negations, and one searches to prove that the negation is contradictory with the
hypotheses. The validity is in general expressed in this way:

Corollary 4.1 (Validity) If a set of clauses T admits some resolution proof, then
T is contradictory.

It turns out to be complete (harder direction).

Theorem 4.6 (Completeness) Let T be a set of contradictory clauses. It admits
some proof by resolution.

4.5 Proofs by tableau method

We have considered up to now some valid and complete proofs systems, without
providing a proof of our theorems. We will study more completely the tableau method.
We have chosen to develop this method, since it is very algorithmic, and based on
the notion of tree. This will contribute to our recurring argumentation that the no-
tion of tree is everywhere in computer science.

4.5.1 Principle

We can first consider that our formulas are written using only the connectors¬,∧,∨,⇒,
since the formula (F ⇔ G) can be considered as an abbreviation of formula ((F ⇒
G)∧ (G ⇒ F )).

Suppose that we want to prove that F is a tautology. If the formula F is of the
form (F1∧F2), then one can try to prove F1 and to prove F2. If the formula F is of the
form (F1 ∨F2), we write F1,F2, and we will explore two possibilities, one for the case
F1, and one for the case F2.

We will basically bring all the possibilities to these two configurations: If the for-
mula F is of the form (F1 ⇒ F2), using the fact that it can be considered as (F2∨¬F1),
we will use the rule of ∨, and if F is of the form ¬(F1 ⇒ F2), using that it can be con-
sidered as (F1 ∧¬F2), we will use the rule of ∧. All other cases can be dealt similarly
using de Morgan’s laws.
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Doing so systematically, we will build a tree, whose root is labeled by the nega-
tion of the formula F . In other words, to prove a formula F , the method starts from
the negation of formula F .

Let’s do it on the example of the following formula

(((p ∧q) ⇒ r ) ⇒ ((p ⇒ r )∨ (q ⇒ r ))).

that we want to prove.

We start from ¬F , that is to say:

¬(((p ∧q) ⇒ r ) ⇒ ((p ⇒ r )∨ (q ⇒ r ))).

• by transforming the implication¬(F1 ⇒ F2) into equivalent formula (F1∧¬F2),
we obtain ((p ∧q) ⇒ r )∧¬((p ⇒ r )∨ (q ⇒ r )) we get to the rule of ∧.

• We then apply the rule of∧: We consider the formulas ((p∧q) ⇒ r ) and¬((p ⇒
r )∨ (q ⇒ r )).

• Let’s consider the latter formula. From de Morgan’s law, it can be considered
as (¬(p ⇒ r )∧¬(q ⇒ r )): We can then associate to this formula ¬(p ⇒ r ) and
¬(q ⇒ r ) by the ∧ rule.

• We consider then ¬(p ⇒ r ), and we get the formulas p and ¬r .

• We then obtain q and ¬r from ¬(q ⇒ r ).

• We consider now ((p ∧ q) ⇒ r ), that can be seen as (r ∨¬(p ∧ q)). Thanks to
the ∨ rule, we have the choice between the formula ¬(p ∧q) or r .

• The case of r is excluded by the previous step, where we had ¬r .

• In the first case, we still have the choice between ¬p or ¬q . The two cases are
excluded, since we had before p and q .

Since all branches lead to a contradiction, there is no possibility in which F could
be false. Consequently, we deduce that F is a tautology.

The computation we have just done is naturally corresponding to the following
tree:
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¬(((p ∧q) ⇒ r ) ⇒ ((p ⇒ r )∨ (q ⇒ r )))

((p ∧q) ⇒ r ),¬((p ⇒ r )∨ (q ⇒ r ))

¬(p ⇒ r ),¬(q ⇒ r )

p,¬r

q,¬r

¬(p ∧q)

¬p ¬q

r

Each branch is a possible scenario. If a branch has a node labeled by some for-
mula A such that ¬A is appearing on the same branch (or their respective oppo-
sites), then one stops to develop this branch, and the branch is said to be closed: This
means that we know that a contradiction is reached. If all the branches are closed,
then we say that the tree is closed, and we are sure that all the possible scenarios are
excluded.

Consider now the example of the formula G given by

((p ∨q) ⇒ (r ⇒ (¬q ⇒¬p))).

With the same method, we build a tree whose root is ¬G .
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¬((p ∨q) ⇒ (r ⇒ (¬q ⇒¬p)))

(p ∨q),¬(r ⇒ (¬q ⇒¬p))

r,¬(¬q ⇒¬p)

¬q,¬¬p

p

p q

On this example, we obtain a tree with two branches. The right branch is closed.
The left branch is not: The propositional variables on this branch are r,¬q and p. By
taking the valuation v with v(r ) = 1, v(q) = 0, v(p) = 1, this provides the value 1 to
¬G , and hence 0 to G . In other words, we know that G is not a tautology. We say that
the tree is open. open .

4.5.2 Description of the method

Let’s now formalize the method. A tableau is a binary tree whose nodes are labeled
by sets of propositional formulas, and that is built recursively from its root, vertices
after vertices, by using two types of rules: The α rules and the β rules.

Remember that, in order to simplify the discussion, we have considered that the
propositional formulas are written using only the connectors ¬,∧,∨,⇒.

Formulas are divided in two groups, the α-group, and the β-group. To each for-
mula, we associate inductively two new formulas according to the following rules:

• The formulas of the following form are α-formula:

1. α= (A∧B). To such a formula is associated α1 = A and α2 = B .

2. α=¬(A∨B). To such a formula is associated α1 =¬A and α2 =¬B .

3. α=¬(A ⇒ B). To such a formula is associated α1 = A and α2 =¬B .

4. ¬¬A: To such a formula is associated α1 =α2 = A.

• The formulas of the following form are β-formulas:

1. β=¬(A∧B). To such a formula is associated β1 =¬A, β2 =¬B .
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2. β= (A∨B). To such a formula is associated β1 = A, β2 = B .

3. β= (A ⇒ B). To such a formula is associated β1 =¬A, β2 = B .

If B a branch of a tableau, we denote by
⋃

B the set of the formulas that appear
on a vertex of B .

The two recursive rules to construct a tableau are the following:

1. An α rule consists in extending a finite branch of tableau T by the vertex la-
beled {α1,α2}, where α is some α-formula that appears on a vertex of B .

2. Aβ rule consists in extending a finite branch of a tableau T by two sons labeled
respectively by {β1} and {β2}, where β is some β-formula that appears in some
vertex of B .

Remark 4.4 Observe that this is not necessarily the last vertex of a branch B that
is developed at each step, but a formula somewhere on the branch.

A branch B is said to be closed if there exists some formula A such that A and ¬A
appears on the branch B . In the opposite case, the branch is said to be open.

A branch B is developed if

1. for any α-formula of
⋃

B , α1 ∈⋃
B and α2 ∈⋃

B .

2. for any β-formula of
⋃

B , β1 ∈⋃
B or β2 ∈⋃

B .

A tableau is said to be developed if all its branches are either closed or developed.
A tableau is said to be closed if all its branches are closed. A tableau is said to be
openopen tree in tableau method if it has some open branch.

Finally, a tableau for a formula A (respectively for a set of formulasΣ) is a tableau
whose root is labeled by {A} (respectively by {A|A ∈Σ}).

4.5.3 Termination of the method

First, observe that it is always possible to apply some α or β rules until a developed
tableau is reached.

Proposition 4.1 If Σ is a finite set of formulas, then there is some (finite) devel-
oped tableau for Σ.

Proof: This is proved by recurrence on the number n of elements of Σ.
For the case n = 1, observe that the length of the formulas α1, α2, β1, and β2 is

always strictly less than the length of α and β. The process of extension of branches
that are not closed hence eventually terminates after finitely many steps. The array
that is obtained a the end is developed, since otherwise it would have some exten-
sion.

For the case n > 1, we can write Σ= {F1, · · · ,Fn}. Consider by recurrence hypoth-
esis a developed tableau forΣ= {F1, · · · ,Fn−1}. If this tableau is closed or if Fn is some
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propositional variable, then this tableau is a developed tableau for Σ. Otherwise, we
can extend all the open branches by applying all the rules corresponding to formula
Fn , and by developing all the obtained branches. The process is terminating for the
same reason as for the case n = 1. □

Remark 4.5 Of course, from a given root, there are many ways to build some
developed tableau.

4.5.4 Validity

The previous method provides a proof method.

Definition 4.7 A formula F said to be provable by tableau if there exists some
closed tableau with the root {¬F }. We then write ⊢F when this holds.

Exercise 4.10 Prove that A is a consequence of ((A∨¬B)∧B) by the tableau
method, i.e. ⊢ (((A∨¬B)∧B) ⇒ A).

Exercise 4.11 Prove that ¬C is a consequence of ((H ∧ (P ∨C )) ⇒ A)∧H ∧
¬A∧¬P ) by the tableau method.

The method is valid.

Theorem 4.7 (Validity) Any provable formula is a tautology.

Proof: We will say that a branch B of a tableau is realizable if there exists some
valuation v such that v(A) = 1 for any formula A ∈ ⋃

B and v(A) = 0 if ¬A ∈ ⋃
B . A

tableau is said to be realizable if it has some realizable branch.
We just need to prove the following result.

Lemma 4.1 Let T ′ be some immediate extension of the tableau T : That is to say
the tableau obtained by applying either an α or a β-rule to T . If T is realizable,
then so does T ′.

This lemmas is sufficient to prove the theorem. Indeed, if F is provable, then
there is some closed tableau whose root is ¬F . That means that in every branch,
there is a formula A such that A and ¬A appear on this branch, and hence none of
the branches of T is realizable. By this lemma, this means that we started from a tree
reduced to ¬F that was not realizable. In other words, that F is a tautology.

It remains to prove the lemma. Let B be some realizable branch of T , and let B ′
the branch of T that is extended in T ′. If B ̸= B ′, then B remains a realizable branch
of T . If B = B ′, then B is extended in T ′,
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1. either in a branch Bα by some α-rule;

2. or by two branches Bβ1 and Bβ2 by some β-rule.

In the first case, let α be the formula used by the rule, and let v be a valuation
that realizes B : From v(α) = 1, we deduce that v(α1) = 1 and v(α2) = 1. Hence v is a
valuation realizing Bα and the tableau T ′ is realizable.

In the second case, let β be the formula used by the β-rule. From v(β) = 1, we
deduce that at least one of the values v(β1) and v(β2) values 1. Hence v realizes one
of the branches Bβ1 and Bβ2 , and the tableau T ′ is realizable. □

4.5.5 Completeness

The method is complete. In other words, the converse of the previous theorem is
true.

Theorem 4.8 (Completeness) Every tautology is provable.

Corollary 4.2 Let F be some propositional formula.
F is a tautology if and only if F is provable.

The rest of this subsection is devoted to prove this theorem.
Observe first that if B is a branch that is both developed and open in some tableau

T , then then set
⋃

B of the formulas that appear in B have the following properties:

1. there is no propositional variable such that p ∈⋃
B and such that ¬p ∈⋃

B ;

2. for every α-formula α ∈⋃
B , α1 ∈⋃

B and α2 ∈⋃
B ;

3. for every β-formula β ∈⋃
B , β1 ∈⋃

B or β2 ∈⋃
B .

Lemma 4.2 Every developed and open branch is realizable.

Proof: Let B some developed and open branch of tableau T . We defined a valu-
ation v by:

1. if p ∈⋃
B , then v(p) = 1;

2. if ¬p ∈⋃
B , then v(p) = 0;

3. if p ̸∈⋃
B and ¬p ̸∈⋃

B , then set (arbitrarily) v(p) = 1.

We prove by structural induction on a that: if A ∈⋃
B , then v(A) = 1, and if ¬A ∈⋃

B , then v(A) = 0.
Indeed, this is true for propositional variables.
If A is aα-formula, thenα1 ∈⋃

B andα2 ∈⋃
B . By induction hypothesis, v(α1) =

1, v(α2) = 1, and hence v(α) = 1.
If A is a β-formula, then β1 ∈⋃

B or β2 ∈⋃
B . By induction hypothesis, v(β1) = 1

or v(β2) = 1, and hence v(β) = 1. □
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Proposition 4.2 If there exists some closed tableau whose root is ¬A, then any
developed tableau whose root is ¬A is closed.

Proof: By contradiction. Let T be some developed and open tableau whose root
is ¬A, and let B be some open branch of T . By previous lemma, B is realizable, sand
since ¬A is in B , ¬A is satisfiable. A is hence not a tautology, and hence not provable
by tableau. There is no closed tableau with the root ¬A. □

We have all the ingredients to prove Theorem 4.8.
Suppose that A is not provable by tableau. Let T be a developed tableau whose

root is ¬A. T is not closed. As in the previous proof, if B is some open branch of T ,
then B is realizable, and hence ¬A is satisfiable. In other words, A is not a tautology.

4.5.6 One consequence of compactness theorem

Definition 4.8 We will say that a setΣ of formulas is refutable by tableau if there
exists some closed tableau with the root Σ.

Corollary 4.3 Every setΣ of formulas that is not satisfiable is refutable by tableau.

Proof: By the compactness theorem, a set of formulas Σ that is not satisfiable
has a finite subset Σ0 that is not satisfiable. This finite set of formulas as a refutation
by tableau, i.e. there is a closed table with the root Σ0. This tableau also provides a
closed tableau with the root Σ. □

4.6 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to
read [Cori & Lascar, 1993a], and [Mendelson, 1987] for the demonstration based on
modus ponens, of [Stern, 1994] for a simple presentation of the proof methods based
on resolution, and to [Lassaigne & de Rougemont, 2004] and [Nerode & Shore, 1997]
for the tableau based methods.

Bibliography This chapter has been written by using [Cori & Lascar, 1993a], and
[Dehornoy, 2006] for the part on proof methods based on modus ponens, and [Stern, 1994]
for the presentation of proofs by resolution method. The part on natural deduction
is taken from [Dowek, 2008]. The section on the tableau method is taken from book
[Lassaigne & de Rougemont, 2004].



Chapter 5

Predicate calculus

Propositional calculus remains very limited, and permits essentially only to talk about
Boolean operations on propositions.

If we want to reason about mathematical assertions, we need some richer con-
structions. For example, one may want to talk about statements like

∀x((Pr i me(x)∧x > 1+1) ⇒Odd(x)). (5.1)

Such a statement is not captured by propositional logic. First of all, since it uses
some predicates, such as Pr i me(x), whose truth value is depending on some vari-
able x, which is not possible in propositional logic. Furthermore, we use here some
quantifiers, such as ∃, ∀ which are not present in propositional logic.

The previous statement is an example of a formula from predicate calculus of
first order. In this course, we will only talk about first order logic. The terminology
first order makes reference to the fact that the existential and universal quantifiers
are authorized only on variables.

A statement of second order (and one talks more generally of higher order logic)
would be a statement where quantifications over functions or relations would be

authorized. For example, we may want to write ¬∃ f (∀x( f (x) > f (x +1))) to mean
that there does not exist some infinitely decreasing sequence. We will not attempt
to understand the theory under this type of statements in this document, as we will
see, the problems and difficulties with first order are already sufficiently numerous.

The objective of this chapter is then to define first order logic. As for proposi-
tional logic, we will do it by talking of the syntax, that is to say the way formulas are
written, and then of their semantic, that is to say, their meanings.

The predicate calculus, remains the most usual formalism to express mathemat-
ical properties. This is also a formalism very often used in computer science to
describe objects. For example, the request languages in data bases are essentially
based on this formalism, applied to some finite objects, representing data.

65
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5.1 Syntax

To write a formula of a first order language, we will use certain symbols that are
common to all the languages, and certain symbols that change from a language to
the other. The symbols that are common to all the languages are:

• the connectors ¬, ∨, ∧, ⇒, ⇔;

• the parentheses ( and ) and the comma ,;

• the universal quantifier ∀ and the existential quantifier ∃;

• an infinite denumerable set of symbols V , called variables.

The symbols that may vary from a language to the other are captured by the
notion of signature. A signature fixes the symbols of constants, the symbols of func-
tions and the symbols of relations that are authorized.

Formally:

Definition 5.1 (Signature of a first order language) The signature

Σ= (C ,F ,R)

of a first order language is given by:

• a first set C of symbols, called constant symbols;

• a second set F of symbols, called function symbols; To each symbol of this
set is associated a strictly positive integer, that is called its arity.

• a third set R of symbols, called relation symbols. To each symbol of this
set is associated a strictly positive integer, that is called its arity.

We suppose that V , C , F , R are pairwise disjoint sets.

A formula of first order will then be some particular word on the alphabet

A (Σ) = V ∪C ∪F ∪R∪ {¬,∨,∧,⇒,⇔, (, ), ,,∀,∃}.

Remark 5.1 In what follows, we will use the following conventions: We consider
that x, y, z,u and v denotes some variables, that is to say some elements of V .
a,b,c,d will denote some constants, that is to say some elements of C .

The intuition is that the constant, functions and relation symbols will be inter-
preted (in what we will call structures). The arity of a function symbol or relation
symbol will correspond to its number of arguments.
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Example 5.1 For example, we can consider the signature

Σ= ({0,1}, {s,+}, {Odd ,Pr i me,=,<})

that has the constant symbols 0 and 1, the function symbol + of arity 2, the func-
tion symbol s of arity 1, the relation symbols Odd and Pr i me of arity 1, the
relation symbols = and < of arity 2.

Example 5.2 We can also consider the signature L2 = ({c,d}, { f , g ,h}, {R}) with
c,d two constant symbols, f a function symbol of arity 1, g and h two function
symbols of arity 2, R a relation symbol of arity 2.

We will define by successive steps, first the terms, that intend to represent ob-
jects, then the atomic formulas that intend to represent some relations between ob-
jects, and then the formulas.

5.1.1 Terms

We have already defined the terms in Chapter 2: What we call here terms over a
signature Σ, is a term built on the union of function and constant symbols of the
signature, and of the variables.

To be more clear, let’s express again our definition:

Definition 5.2 (Termes sur une signature) Let Σ= (C ,F ,R) be a signature.
The set T of terms on the signature Σ is the language over alphabet A (Σ)

inductively defined by:

(B) every variable is a term: V ⊂ T ;

(B) every constant is a term: C ⊂ T ;

(I ) if f is a function symbol of arity n and if t1, t2, · · · , tn are terms, then f (t1, · · · , tn)
is a term

Definition 5.3 A closed term is a term without any variable.

Example 5.3 +(x, s(+(1,1))) is a term built over the signature of Example 5.1
that is not closed. +(+(s(1),+(1,1)), s(s(0))) is a closed term.

Example 5.4 h(c, x), h(y, z), g (d ,h(y, z)) and f (g (d ,h(y, z))) are terms over the
signature L2 of Example 5.2.

5.1.2 Atomic formulas
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Definition 5.4 (Atomic formulas) Let Σ= (C ,F ,R) be a signature.
An atomic formula on the signature Σ is a word on the alphabet A (Σ) of

the form R(t1, t2, · · · , tn), where R ∈ R is a relation symbol of arity n, and where
t1, t2, · · · , tn are terms over Σ.

Example 5.5 > (x,+(1,0)) is some atomic formula on the signature of Example
5.1. So is = (x, s(y)).

Example 5.6 R( f (x), g (c, f (d))) is some atomic formula over L2.

Remark 5.2 We will agree to write sometimes t1Rt2 for some binary symbols,
such as =, <, + to avoid too heavy notations: For example, we will write x > 1+1
for > (x,+(1,1)).

5.1.3 Formulas

Definition 5.5 (Formules) Let Σ= (C ,F ,R) be a signature.
The set of (of first order) formulas on the signature Σ is the language over

alphabet A (Σ) inductively defined by:

(B) every atomic formula is a formula;

(I ) if F is a formula, then ¬F is a formula;

(I ) if F and G are two formulas, then (F ∧G), (F ∨G), (F ⇒ G), and (F ⇔ G)
are formulas;

(I ) if F is a formula, and if x ∈ V is a variable, then ∀xF is a formula, and
∃xF is a formula.

Example 5.7 The statement ∀x((Pr i me(x)∧ x > 1+1) ⇒Odd(x)) is a formula
on the signature of Example 5.1.

Example 5.8 So does ∃x(s(x) = 1+0∨∀y x + y > s(x))

Example 5.9 Examples of formulas over the signature L2:

• ∀x∀y∀z((R(x, y)∧R(y, z) ⇒ R(x, z))

• ∀x∃y(g (x, y) = c ∧ g (y, x) = c);

• ∀x¬ f (x) = c;
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• ∀x∃y¬ f (x) = c.

5.2 First properties and definitions

5.2.1 Decomposition / Uniqueness reading

As for the propositional formulas, one can always decompose a formula, and in a
unique way.

Proposition 5.1 (Decomposition / Unique reading) Let F be a formula. Then
F is of one, and exactly one of the following forms:

1. an atomic formula;

2. ¬G, where G is a formula;

3. (G ∧H) where G and H are formulas;

4. (G ∨H) where G and H are formulas ;

5. (G ⇒ H) where G and H are formulas;

6. (G ⇔ H) where G and H are formulas;

7. ∀xG where G is a formula and x is a variable;

8. ∃xG where G is a formula and x is a variable.

Furthermore, in the first case there is a unique way to “read”’ the atomic formula.
In all the other cases, there is unicity of the formula G and of the formula H with
this property.

One can then represent each formula by a tree (its decomposition tree), that is in
immediate correspondence with its derivation tree in the sense of Chapter 2): Each
vertex is labeled by some constant, function or relation symbol, or by the symbols
¬,∧,∨,⇒,⇔ or a quantifier or universal quantifier.

Example 5.10 For example, the formula

(∀x∃yR(x, y) ⇒∃xR ′(x, y, a)) (5.2)

is represented by the following tree
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⇒

∀x

∃y

R

x y

∃x

R ′

x y a

Each subtree of such a tree represents a subformula of F . If one prefers:

Definition 5.6 (Subformula) A formula G is a subformula of a formula F if it
appears in the decomposition of F .

Exercise 5.1 (solution on page 231) Let us fix a signature containing the
relation symbols R1, R2 or respective arity 1 and 2. Let us fix the set of vari-
ables V = {x1, x2, x3}. Which of the following words are formulas?

• (R1(x1)∧R2(x1, x2, x3))

• ∀x1(R1(x1)∧R2(x1, x2, x3))

• ∀x1∃R(R(x1)∧R2(x1, x1))

• ∀x1∃x3(R1(x1)∧R3(x1, x2, x3))

5.2.2 Free variables

The intuition of what follows is to distinguish the free variables from the other: All
of this is about the “∀x” and “∃x” which are binders binders: When we write ∀xF or
∃xF , then x become some bound variable. In other words, when we will talk about
the semantic of formulas, the truth value of ∀xF or ∃xF will intend not to depend
on x: We could well write ∀yF (y/x) (respectively: ∃yF (y/x)) where F (y/x) denotes
intuitively the formula that is obtained by replacing x by y in formula F .

Remark 5.3 We have exactly the same phenomenon in symbols such as the inte-

gral symbol in mathematics: In the expression
∫ b

a f (t )d t, the variable t is some
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bound (dummy) variable. In particular
∫ b

a f (u)du is exactly the same integral.

Let’s do this very properly. A same variable can appear several times in a given
formula, and we need to be able to locate every occurrence, taking care to ∃ and ∀.

Definition 5.7 (Occurrence) An occurrence of a variable x in some formula F
is an integer n such that the nth symbol of word F is x and such that the (n−1)th
symbol is not ∀ nor ∃.

Example 5.11 8 and 17 are occurrences of x in the formula (5.2). 7 and 14 are
not: 7 because the 7th symbol of F is not an x (this is an open parenthesis) and
14 because the 14th symbol of F that is indeed a x is quantified by a ∃.

Definition 5.8 (Free, bounded Variable) • An occurrence of a variable x in
a formula F is a bounded occurrence if this occurrence appears in some
subformula of F that is not starting by some quantifier ∀x or ∃x. Other-
wise the occurrence is said to be free.

• A variable is free in a formula if it has at least one free occurrence in the
formula.

• A formula F is closed if it does not have any free variable.

Example 5.12 In the formula (5.2), the occurrences 8, 17 and 10 of x and y are
bounded. The occurrence 19 of y is free.

Example 5.13 In the formula (R(x, z) ⇒∀z(R(y, z)∨y = z)), the only occurrence
of x is free, the two other occurrences of y are free. The first (least) occurrence of z
is free, and the others are bounded. The formula ∀x∀z(R(x, z) ⇒∃y(R(y, z)∨y =
z)) is closed.

The notation F (x1, · · · , xk ) means that the free variables of the formula F are
among x1, · · · , xk .

Exercise 5.2 (solution on page 231) Find all the free and the bounded oc-
currences in the following formulas:

• ∃x(l (x)∧m(x))

• (∃xl (x))∧m(x)
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Exercise 5.3 Prove that the free!variable ℓ(F ) of a formula F can be ob-
tained by the following inductive definition:

• ℓ(R(t1, · · · , tn)) = {xi |xi ∈ V and xi appears in R(t1, · · · , tn)};

• ℓ(¬G) = ℓ(G);

• ℓ(G ∨H) = l (G ∧H) = ℓ(G ⇒ H) = ℓ(G ⇔ H) = ℓ(G)∪ℓ(H);

• ℓ(∀xF ) = ℓ(∃xF ) = ℓ(F )\{x}.

5.3 Semantic

We can now talk about the meaning that we give to formulas. Actually, to provide a
meaning to formulas, we need to fix some meaning of the symbols of the signature,
and this is the purpose of the notion of structure.

Definition 5.9 (Structure) Let Σ= (C ,F ,R) be a signature.
A structure M of signature Σ is given by:

• a non-empty set M, called its base set, or domain of the structure;

• an element, denoted by cM, for each constant symbol c ∈C ;

• a function, denoted by f M, of M n → M for each function symbol f ∈F of
arity n ;

• a subset, denoted by RM, of M n for each relation symbol R ∈F of arity n.

We say that the constant c (respectively the function f , the relation R) is inter-
preted by cM (resp. f M, RM). A structure is sometimes also called a realisation of
the signature.

Example 5.14 A realisation of the signatureΣ= ({0,1}, {+,−}, {=,>}) corresponds
to the domain N of natural integers, with 0 interpreted by the integer 0, 1 inter-
preted by 1, + interpreted by addition, − interpreted by subtraction, and = by
equality on the integers: That is to say by the subset {(x, x)|x ∈ N}, and > by the
order on the integers, that is to say by the subset {(x, y)|x > y}. It can be denoted
by (N,=,<,+,−,0,1).

Example 5.15 Another realisation of this signature corresponds to the domain
R of the reals, where 0 is interpreted by the real 0, 1 by the real 1, + by addition,
− by subtraction, and = by equality on the reals, and > by the order on the reals.
It can be denoted by (R,=,<,+,−,0,1).
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Example 5.16 We can obtain a realisation of the signature L2 by considering
the base set R of the reals, by interpreting R as the order relation ≤ on the reals,
the function f as the function that to x associates x +1, the functions g and h as
respectively the addition and the multiplication on the reals, the constants c and
d as the reals 0 and 1. It can be denoted by (R,≤, s,+,×,0,1).

We will then use the notion of structure to interpret the terms, the atomic for-
mulas, and then inductively the formulas as one may expect.

5.3.1 Interpretation of terms

Definition 5.10 (Valuation) Fix a structure M. A valuation v is a distribution
of values to the variables, that is to say a function from V to the domain M of the
structure M.

Definition 5.11 (Interprétation des termes) Let M be a structure of signature
Σ= (C ,F ,R).

Let t be a term of the form t (x1, · · · , xk ) overΣwhose free variables are x1, · · · , xk .
Let v be a valuation.
The interpretation tM of term t for the valuation v, also denoted by tM[v],

or tM is defined inductively as follows:

(B) every variable is interpreted as its value by the valuation: if t is the variable
xi ∈ v, then tM is v(xi ) ;

(B) every constant is interpreted as its interpretation in the structure: if t is the
constant c ∈C , then tM is cM ;

(I ) each function symbol is interpreted as its interpretation int the structure: if
t is the term f (t1, · · · , tn), then tM est f M(tM1 , · · · , tMn ), where tM1 , · · · , tMn
are the respective interpretations of the terms t1, · · · , tn .

Remark 5.4 The interpretation of a term is an element of M, where M is the
base set of the structure M. In other words, the terms denote some elements of
the structure.

Example 5.17 Let N be the structure (N,≤, s,+,×,0,1) of signature

L2 = ({c,d}, { f , g ,h}, {R}) :

• the interpretation of h(d , x) for a valuation such that v(x) = 2 is 2.

• the interpretation of term f (g (d ,h(y, z))) for a valuation such that v(y) =
2, v(z) = 3 is 8.
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5.3.2 Interpretation of atomic formulas

An atomic formula F = F (x1, · · · , xk ) is an object that is interpreted either by true or
by false in some valuation v . When F is interpreted by true, we say that the valuation
v satisfies F , and this fact is denoted by v |=F . We denote v ̸|=F in the contrary case.

There only remain to define formally this notion:

Definition 5.12 (Interpretation of some atomic formula) LetM be a structure
of signature Σ= (C ,F ,R).

The valuation v satisfies the atomic formula R(t1, t2, · · · , tn) of free variables
x1, · · · , xk if (tM1 [v], tM2 [v], · · · , tMn [v]) ∈ RM, where RM is the interpretation of
relation symbol R in the structure.

Example 5.18 For example, on the structure of Example 5.14, x > 1+ 1 is in-
terpreted by 1 (true) in the valuation v(x) = 5, and by 0 (false) in the valuation
v(x) = 0. The atomic formula 0 = 1 is interpreted by 0 (false).

Example 5.19 On the structure N of Example 5.17, the atomic formula R( f (c),
h(c, f (d))) is interpreted by false.

5.3.3 Interpretation of formulas

More generally, a formula F = F (x1, · · · , xk ) is an object that is interpreted either by
true or by false in some valuation v . When F interprets to true, we say that the valu-
ation v satisfies F , and we write this fact by v |=F , and v ̸|= F for the contrary case.

Definition 5.13 (Interpretation of some formula) Let M be a structure of sig-
nature Σ= (C ,F ,R).

The expression “the valuation v satisfies the formula F = F (x1, · · · , xk )”, de-
noted by v |=F , is defined inductively in the following way:

(B) it has already been defined for some atomic formula;

¬,∨,∧,⇒,⇔ are interpreted exactly as in the propositional calculus:

(I ) the negation is interpreted by the logical negation:
if F is of the form ¬G, then v |= F if and only if v ̸|=G;

(I ) ∧ is interpreted as the logical conjunction:
if F is of the form (G ∧H), then v |= F if and only if v |=G and v |= H;

(I ) ∨ is interpreted as the logical or
if F is of the form (G ∨H), then v |= F if and only if v |=G or v |= H;

(I ) ⇒ is interpreted as the logical implication:
if F is of the form (G ⇒ H), then v |= F if and only if v |= H or v ̸|=G;
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(I ) ⇔ is interpreted as the logical equivalence:
if F is of the form (G ⇔ H), then v |= F if and only if (v |=G and v |= H) or
(v ̸|=G and v ̸|= H).

∃x and ∀x are interpreted as existential and universal quantifications:

(I ) if F is of the form ∀x0G(x0, x1, · · · , xk ), then v |= F if and only if for all a0 ∈
M v ′ |=G, where v ′ is the valuation such that v ′(x0) = a0, and v ′(x) = v(x)
for all x ̸= x0;

(I ) if F is of the form ∃x0G(x0, x1, · · · , xk ), then v |= F if and only for a cer-
tain element a0 ∈ M, we have v ′ |= G, where v ′ is the valuation such that
v ′(x0) = a0, and v ′(x) = v(x) for every x ̸= x0.

Example 5.20 • The formula F (x) defined by ∀yR(x, y) is true in the struc-
ture N for 0 (i.e. for a valuation such that v(x) = 0), but false for all the
other integers.

• The formula G(x) defined by ∃y x = f (y) is true in the structure N for the
integers distinct from 0 and false for 0.

• The closed formula∀x∀z∃y(x = c∨g (h(x, y), z) = c) of language L2 is true
in (R≤, s,+,×,0,1) and false in N = (N,≤, s,+,×,0,1).

In the case where the valuation v satisfies the formula F , one also says that F is
true in v . In the contrary, we say that F is false in v .

Definition 5.14 (Model of a formula) For a closed formula F ,the satisfaction of
F in a structure M is not depending on the valuation v. In the case where the
formula F is true, we say that the structure M is a model of F , and we write
M|=F .

Exercise 5.4 (solution on page 231) Let Σ be a signature made of some bi-
nary relation R and of the predicate =. Write some formula that is valid if
and only if R is some order (we can suppose that = is interpreted by equal-
ity).

5.3.4 Substitutions

Definition 5.15 (Substitution in a term) Given some term t and some variable
x appearing in this term, we can replace all the occurrences of x by some other
term t ′. The new term is said to be obtained by substitution of t ′ to x in t , and is
denoted by t (t ′/x).
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Example 5.21 The result of the substitution of f (h(u, y)) to x in g (y,h(c, x)) is
g (y,h(c, f (h(u, y)))). The result of the substitution of g (x, z) to y in this new term
is

g (g (x, z),h(c, f (h(u, g (x, z))))).

To do a substitution of a term to some free variable in some formula, it is neces-
sary to does it carefully: Otherwise the meaning of the formula can be completely
modified by the phenomenon of capture of variables.

Example 5.22 Let F (x) be the formula ∃y(g (y, y) = x). In the structure N where
g is interpreted by addition the meaning of F (x) is clear: F (x) is true in x if and
only if x is even.

If we replace the variable x by z, the obtained formula has the same meaning
that the formula F (x) (up to the renaming of the free variable). F (z) is true in z
if and only if z is even.

But if we replace x by y, the obtained formula ∃y(g (y, y) = y) is a closed for-
mula that is true in the structure N . The variable x have been replaced by a
variable that is quantified in the formula F .

Definition 5.16 (Substitution) The Substitution of a term t to a free variable x
in some formula F is obtained by replacing all the free occurrences of this vari-
able by the term t,under the reserve that the following condition is satisfied: For
every variable y appearing in t , y has no free occurrence appearing in a subfor-
mula of F starting by a ∀ or ∃ quantifier. The result of this substitution, if it is
possible, is denoted by F (t/x).

Example 5.23 The result of the substitution of the term f (z) to the variable x in
the formula F (x) given by

(R(c, x)∧¬x = c)∧ (∃y g (y, y) = x))

is the formula

(R(c, f (z))∧¬ f (z) = c)∧ (∃y g (y, y) = f (z))).

Proposition 5.2 If F is a formula, x is some free variable in F , and t is a term
such that the substitution of t in x in F is defined, then the formulas (∀xF ⇒
F (t/x)) and (F (t/x) ⇒∃xF ) are valid.

Proof: We prove by induction on the formula F that the satisfaction of the for-
mula F (t/x) by the valuation v is equivalent to the one of formula F (x) by the val-
uation v1 where v1 is obtained from v by giving to x the interpretation of t for the
valuation v .
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The only cases requiring a justification are those where the formula F is of the
form ∀G and ∃xG . From the hypothesis for the substitution of t to x, the considered
quantification is about some variable y distinct both from x and from all the vari-
ables from t . It suffices then to examine the satisfaction of the formula G(t/x) by a
valuation v ′ equals to v but on y . By induction hypothesis on G , the formula G(t/x)
is satisfied by v ′ if and only if G is satisfied by the valuation v ′

1 where v ′
1 is obtained

from v ′ by giving to x the interpretation of t for the valuation v ′: Indeed, v and v ′
are equal on all the variables appearing in the term t . □

5.4 Equivalence, Normal forms

5.4.1 Equivalent formulas

Definition 5.17 Let Σ= (C ,F ,R) be as signature.

• A structureM satisfies the formula F (x1, · · · , xk ) if it satisfies the closed for-
mula ∀x1 · · ·∀xk F (x1, · · · , xk ). This latter formula is called the universal
closure.

• A closed formula F is said valid if it is satisfied by any structure M.

• A formula F is said valid if its universal closure is valid.

• Two formulas F and G are equivalent if for any structure, and for any val-
uation v, the formulas F and G take the same truth value. We write F≡G
in this case.

Exercise 5.5 Prove that the relation ≡ is an equivalence relation.

Proposition 5.3 Let F be a formula. We have the following equivalences

¬∀xF ≡∃x¬F

¬∃xF ≡∀x¬F

∀x∀yF ≡∀y∀xF

∃x∃yF ≡∃y∃xF

Proposition 5.4 Suppose that the variable x is not free in the formula G. Let F
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be a formula. We have then the following equivalences:

∀xG ≡ ∃xG ≡G (5.3)

(∀xF ∨G) ≡ ∀x(F ∨G) (5.4)

(∀xF ∧G) ≡ ∀x(F ∧G) (5.5)

(∃xF ∨G) ≡ ∃x(F ∨G) (5.6)

(∃xF ∧G) ≡ ∃x(F ∧G) (5.7)

(G ∧∀xF ) ≡ ∀x(G ∧F ) (5.8)

(G ∨∀xF ) ≡ ∀x(G ∨F ) (5.9)

(G ∧∃xF ) ≡ ∃x(G ∧F ) (5.10)

(G ∨∃xF ) ≡ ∃x(G ∨F ) (5.11)

(∀xF ⇒G) ≡ ∃x(F ⇒G) (5.12)

(∃xF ⇒G) ≡ ∀x(F ⇒G) (5.13)

(G ⇒∀xF ) ≡ ∀x(G ⇒ F ) (5.14)

(G ⇒∃xF ) ≡ ∃x(G ⇒ F ) (5.15)

Each of the equivalence is rather simple to be established, but tedious, and we
leave the proofs a exercises.

Exercise 5.6 Prove Proposition 5.4.

Exercise 5.7 (solution on page 231) Are the following propositions equiva-
lent ? If not, does the proposition on the left implies the one one the right?

1. ¬(∃xP (x)) and (∀x¬P (x))

2. (∀xP (x)∧Q(x)) and ((∀xP (x))∧ (∀xQ(x)))

3. ((∀xP (x))∨ (∀xQ(x))) and (∀xP (x)∨Q(x))

4. (∃xP (x)∨Q(x)) and ((∃xP (x))∨ (∃xQ(x)))

5. (∃xP (x)∧Q(x)) and ((∃xP (x))∧ (∃xQ(x)))

6. (∃x∀yP (x, y)) and (∀y∃xP (x, y))

5.4.2 Prenex normal form

Definition 5.18 (Prenex form) A formula F is said to be in prenex form if it is
of the form

Q1x1Q2x2 · · ·Qn xnF ′
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where each of the Qi is either a ∀ quantifier or a ∃ quantifier, and F ′ is a formula
not containing any quantifier.

Proposition 5.5 Every formula F is equivalent to some formula in prenex nor-
mal form G.

Proof: By structural induction on F .
Base case. If F is of the form R(t1, · · · , tn), for some relation symbol R, then F is

in prenex normal form.
Inductive case:

• If F is of the form ∀xG where ∃xG , by induction hypothesis G is equivalent
to G ′ in prenex normal form, and so F is equivalent to ∀xG ′ or ∃xG ′ that is in
prenex normal form.

• If F is of the form ¬G , by induction hypothesis G is equivalent to G ′ in prenex
normal form Q1x1Q2x2 · · ·Qn xnG ′′. By using the equivalences of the Proposi-
tion 5.3, F is equivalent to Q ′

1x1Q ′
2x2 · · ·Q ′

n xn¬G ′′, by taking Q ′
i = ∀ if Qi = ∃

and Q ′
i =∃ if Qi =∀.

• If F is of the form (G ∧H), by induction hypothesis G and H are equivalent to
formulas G ′ and H ′ in prenex normal form. By applying the equivalences (5.4)
à (5.11), we can “bring up” the quantifiers in front of the formula: We need
to proceed with care, since for example F = (F1 ∧F2) = ((∀xF ′

1)∧F ′
2) with x

free in F ′
2, we need first to rename the variable x in F1 by replacing x by some

new variable z not appearing nor in F1 nor in F ′
2, in order to be able to use the

required equivalence among the equivalences (5.4) à (5.11).

• The other cases are treated in a similar way, by using the equations of the two
previous propositions.

□
By using the idea of the conjunctive and disjunctive normal form of proposi-

tional calculus, we can even go further:

Definition 5.19 • A literal is some atomic formula or the negation of some
atomic formula.

• A clause is a disjunction of literals.

• A prenex formula Q1x1Q2x2 · · ·Qn xnG is in conjunctive normal form if
the quantifier free formula G is a clause or a conjunction of clauses.

The notion of disjunctive normal form can be defined in a dual way by consid-
ering disjunctions of conjunctions of atomic formulas instead of conjunctions of
disjunctions of atomic formulas.
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Proposition 5.6 Every formula F is equivalent to some prenex formula

Q1x1Q2x2 · · ·Qn xnG ,

where G is in conjunctive normal form.

Proposition 5.7 Every formula F is equivalent to some prenex formula

Q1x1Q2x2 · · ·Qn xnG ,

where G is in disjunctive normal form.

Proof: Let F be a formula and Q1x1Q2x2 · · ·Qn xnG a prenex equivalent formula
equivalent to F . We denote by A1, A2, . . . , Ak the atomic formulas that appear in G .
We can define a formula Hof propositional calculus that uses the variables {p1, p2, . . . , pk }
such that the formula G corresponds to the formula H(A1/p1, A2/p2, . . . , Ak /pk ). Let
H ′ be a conjunctive (respectively: disjunctive) normal form equivalent to H , ob-
tained int he propositional calculus.

The formula G is equivalent to the formula G ′ given by expression H ′(A1/p1,
A2/p2, . . . , Ak /pk ) and then F is equivalent to Q1x1Q2x2 · · ·Qn xnG ′ in conjunctive
(resp. disjunctive) normal form. □

Exercise 5.8 (solution on page 232) Determine an equivalent prenex nor-
mal form equivalent to

(∃xP (x)∧∀x(∃yQ(y) ⇒ R(x))).

Exercise 5.9 Determine an equivalent normal form equivalent to

(∀x∃yR(x, y) ⇒∀x∃y(R(x, y)∧∀z(Rxz ⇒ (R y z ∨ y = z))))

and to
∀x∀y((R(x, y)∧¬x = y) ⇒∃z(y = g (x,h(z, z)))).

5.4.3 Skolem form

The previous results where about transformations on formulas preserving the equiv-
alence.

We will now focus on weaker transformations in order to eliminate the existential
quantifiers. Starting form some closed formula F , we will obtain some formula F ′
that will not be necessarily equivalent. The formula F ′ will be written on a signature
where possibly some new constant and function symbols have been added. It will
have a model if and only if the initial formula has one.
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Definition 5.20 Let Σ= (C ,F ,R) be a signature.

• A formula F is said to be universal it it is prenex and all the quantifiers
appearing in F are ∀ quantifiers.

• A signature Σ′ = (C ′,F ′,R′) is a Skolem extension of Σ if it is obtained
by adding toΣ some function symbols (possibly infinitely many) and some
constant symbols (possibly infinitely many).

A closed prenex formula of F of Σ′ is either universal or of the form

∀x1∀x2 . . .∀xk∃xG

where G is prenex. In the latter case, it may happen that k = 0 and F is then of the
form ∃xG .

The transformation that we will apply consists in associating to F a formula F1

given by ∀x1∀x2 . . .∀xkG( f (x1, . . . , xk )/x) where f is some function symbol not ap-
pearing in formula G . In the particular case where F is ∃xG (i.e. the case k = 0),
we will associate some formula F1 given by G(c) where c is a constant symbol not
appearing in formula G .

The formula F1 obtained in this way has one less existential quantifier than the
formula F .

Example 5.24 To the formula F given by

∀x∀y∃z(R( f (x), g (z, y)) ⇒ (R( f (x), z)∧R(z,h(x, y))))

on the signature Σ= ({a,b}, { f , g ,h}, {R}), we will associate the formula F1 given
by

∀x∀y(R( f (x), g (k(x, y), y)) ⇒ (R( f (x),k(x, y))∧R(k(x, y),h(x, y))))

on the signature Σ′ = ({a,b}, { f , g ,h,k}, {R}) where we have added the symbol k
or arity 2.

F has a model if and only if F ′ has a model.

Definition 5.21 Let F be a closed prenex formula on the signature Σ′ that has n
existential quantifiers.

• A Skolem form of F is a formula obtained by applying n times successively
the previous transformation.

• The new functions and constants introduced in these transformations are
called the Skolem functions and constants.

By construction, the Skolem form of F is some universal formula.
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Example 5.25 Staring from F given by

∃x∀y∀x ′∃y ′∀z(R(x, y) ⇒ (R(x ′, y ′)∧ (R(x ′, z)∧ (R(x ′, z) ⇒ (R(y ′, z)∨ y ′ = z)))))

a Skolem form of F is the formula

∀y∀x ′∀z(R(e, y) ⇒ (R(x ′,k(y, x ′))∧ (R(x ′, z) ⇒ (R(k(y, x ′), z)∨ (k(y, x ′) = z)))))

The interest of this transformation lies in the following result:

Theorem 5.1 Let F ′ be a Skolem form of F . Then F ′ has a model if and only if F
has a model.

Proof: We only need to prove that the property is true when F ′ is obtained from
F by some of the transformation above (and repeat n times the argument in the
general case): If F is given by

∀x1∀x2 . . .∀xk∃xG

then F1 is given by ∀x1∀x2 . . .∀xkG( f (x1, . . . , xk )/x). If F1 has a model, then F has a
model: This comes from the validity of the formula

∀x1∀x2 . . .∀xkG( f (x1, . . . , xk )/x) ⇒∀x1∀x2 . . .∀xk∃xG

The case k = 0 follows from the validity of the formula

G(c) ⇒∃xG(x).

To prove the converse direction, suppose that F has a model M of base set M . It
suffices to define the interpretation of the corresponding Skolem constant or func-
tion. If F =∀x1∀x2 . . .∀xk∃xG the interpretation of the Skolem function f is given by
taking for each sequence a1, a2, . . . , ak of elements of M an element f M(a1, a2, . . . , ak )
among the a ∈ M such that

M |=G(a1, a2, . . . , ak ),

which is possible since M is a model of F .
If F is of the form ∃xG , the interpretation of the Skolem constant c is taken by

taking an element cM among the b ∈ M satisfying G in M. □

5.5 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest [Cori & Lascar, 1993a],
[Dowek, 2008] or [Lassaigne & de Rougemont, 2004].

Bibliography This chapter has been written by using essentially [Cori & Lascar, 1993a]
and [Lassaigne & de Rougemont, 2004].



Chapter 6

Models. Completeness.

We can now describe various objects, and talk about their properties. We have in-
deed all the ingredients to talk about models and theories. In this chapter, after a
few examples, we will then focus on the completeness theorem.

The basic concept is the the concept of theory.

Definition 6.1 (Theory) • A theory T is a set of closed formulas over some
given signature. The formulas of a theory are called the axioms of this
theory.

• A structure M is a model of the theory T if M is a model of each of the
formulas of the theory.

Definition 6.2 (Consistant theory) A theory is said to be consistent if it has a
model. It is said inconsistent if it is not consistent.

Of course, the inconsistent theories have less interest.

Remark 6.1 From a computer science point of view, one can see a theory as a
specification of an object: We describe the object thanks to first order logic, i.e.
thanks to axioms that describe it.

A consistent specification (theory) is hence nothing but a theory that specifies
at least one object.

Remark 6.2 In this context, the question of completeness is to know if one de-
scribes correctly the object in question, or the class of objects in question: The
completeness theorem states that this is indeed the case for a consistent theory,
as long as one want to talk about the whole class of all the models of these speci-
fications.

We are going to start by giving several example of theories, in order to make our
discussion less abstract.

83
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6.1 Examples of theories

6.1.1 Graphs

An oriented graph can be seen as a model of the theory without any axiom over the
signature Σ= (;,;, {E }), where the relation symbol E is of arity 2: E(x, y) means that
there is an arc between x and y .

Example 6.1 The formula ∃y(E(x, y)∧∀z(E(x, z) ⇒ x = y)) is true in x if and
only if y is of exterior degree 1 (modulo the comment of subsection that follows
about equality).

A non-oriented graph can be seen as a model of the theory with the unique ax-
iom

∀x∀y (E(x, y) ⇔ E(y, x)), (6.1)

on the same signature. This axioms states that if there is an arc between x and y ,
then there is an arc between y and x and conversely.

Example 6.2 Here are two (non-oriented) graphs

The formula ∃x∀y(¬(x = y) ⇒ E(x, y)) is true on the first and not on the second.

6.1.2 Simple remarks

Remark 6.3 On the signature Σ= (;,;, {E }), there is no term. We hence cannot
designate any particular vertex but using some free variable, or via some quan-
tifiers.

If one wants to designate one or some particular vertex, we can add one
or several constant symbols. We can hence for example consider the signature
(V ,;, {E }) where V = {a,b,c}.

For example, the graph
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is a model of E(a,b)∧E(b,c)∧E(a,c).
But be careful, this is not the only one: The graph

is indeed also a model: The domain of a model can contains some elements that
are not corresponding to any term.

Furthermore, the interpretation of a, b or c could be the same element.

Example 6.3 One can sometimes avoid constants. The formula

∃x∃y∃z(¬(x = y)∧¬(y = z)∧¬(x = z)∧E(x, y)∧E(y, z)∧E(x, z)∧∀t (t = x∨t = y∨t = z))
(6.2)

characterizes the triangles such as the graph above (modulo the comment of the
following subsection concerning equality).

Remark 6.4 Be careful: All the properties cannot be expressed easily. For exam-
ple, one can prove that this is not possible to write a (first order) formula which
characterizes the connected graphs. Exercise: Try to write it in order to feel where
the problem is.

Remark 6.5 This is the presence of other models that the one that we intend to
describe, and that is sometimes unavoidable, that would be at the heart of the
difficulties about the axiomatisation of the integers.

6.1.3 Equality

Be careful,the previous discussion is not totally correct: We have used at several
times the equality symbol. The above discussion was supposing that the interpreta-
tion of equality is indeed equality.

Example 6.4 Actually,

is indeed a model of (6.2), and this is consequently perfectly false that (6.2) char-
acterizes the triangles.

Actually, let’s call {a,b,c,d} the vertices from bottom to top and from left to
right; we can consider the interpretation ≡ of = with a ≡ a,b ≡ b,c ≡ c,d ≡ b
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and a ̸≡ b, a ̸≡ c,b ̸≡ c. Such a model satisfies indeed (6.2). However, ≡, the
interpretation of = is not the equality. Observe that we have an edge between a
and b, b = d that is true, but no edge between a and d.

To make the above discussion fully correct, we can add a symbol = to the signa-
ture to all the examples, and add the axioms satisfied by equality.

Let R be a set of relation symbols that contains at least the symbol =.

Definition 6.3 (Axioms of equality) The axioms of equality for a signature Σ=
(C ,F ,R), with =∈R, are

• the axiom ∀x x = x;

• for every function symbol f ∈F of arity n, the axiom

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ f (x1, · · · , xi , · · · , xn) = f (x1, · · · , x ′
i , · · · , xn));

• for every relation symbol R ∈R of arity n, the axiom

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ (R(x1, · · · , xi , · · · , xn) ⇒ R(x1, · · · , x ′
i , · · · , xn)).

All these axioms specify that the equality is reflexive, and is preserved by the
relation and function symbols.

Exercise 6.1 (solution on page 232) Prove that we then necessarily have
∀x∀y (x = y ⇒ y = x).

Exercise 6.2 Prove that we then necessarily have for each relation symbol
R ∈R or arity n,

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ (R(x1, · · · , xi , · · · , xn) ⇔ R(x1, · · · , x ′
i , · · · , xn)).

Exercise 6.3 Prove that we then necessarily have for each formula F (x1, x2, . . . , xn)

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ (F (x1, · · · , xi , · · · , xn) ⇔ F (x1, · · · , x ′
i , · · · , xn)).

Exercise 6.4 Prove that we then necessarily have∀x∀y∀z ((x = y∧y = z) ⇒
x = z).

We deduce from the two previous exercises, that = (and its interpretation) is
some equivalence relation.
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6.1.4 Small digression

Definition 6.4 A model M of a theory T over a signature with the relation sym-
bol = is said to respect equality if the interpretation of = in M is equality.

In other terms, the interpretation of symbol = in M is the subset {(x, x)|x ∈ M }
where M is the base set of M.

It turns out if this is not the case, and if the axioms of equality are among the
theory T , we can come back to this case.

Proposition 6.1 Let T be a theory with a signature Σ, with at least the symbol
= as a relation symbol, which contains the axioms of equality for Σ.

If T has a model, then T has also some model that respects equality.

Proof: We can quotient the domain M of any model M of T by the equivalence
relation that puts in the same equivalence class x and y when the interpretation of
x = y is true in M (i.e. the interpretation of =). The quotient model,that is to say the
model whose elements are the equivalence classes for this equivalence relation, is
by definition, respecting equality. □

As a consequence, a theory T has a model that respects equality if and only if the
theory plus all the axioms of equality (for the corresponding signature) has a model.

Example 6.5 In the example 6.3, the sentence should be: The models that re-
spects equality of the formula (6.2) characterize the triangles.

Or possibly: The theory made of the formula (6.2) and the axioms of equal-
ity (in that case ∀x x = x,∀x∀x ′∀y(x = x ′ ⇒ (R(x, y) ⇒ R(x ′, y))),∀x∀y∀y ′(y =
y ′ ⇒ (R(x, y) ⇒ R(x, y ′))))) characterize the triangles.

6.1.5 Groups

Let’s start by talking about groups, in group theory.

Example 6.6 (Group) A group is a model of the theory made of the axioms of
equality and of the two formulas:

∀x∀y∀z x ∗ (y ∗ z) = (x ∗ y)∗ z (6.3)

∃e∀x (x ∗e = e ∗x = x ∧∃y(x ∗ y = y ∗x = e)) (6.4)

on the signature Σ= (;, {∗}, {=}), where ∗ and = are of arity 2.

The first property asserts that the law ∗ of the group is associative, and the sec-
ond that there is some neutral element, e, and that any element has some inverse.

Example 6.7 (Commutative group) A commutative group (also called an Abelian
group) is a model of the theory made of the axioms of equality and of the three
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formulas:

∀x∀y∀z x ∗ (y ∗ z) = (x ∗ y)∗ z (6.5)

∃e∀x (x ∗e = e ∗x = x ∧∃y(x ∗ y = y ∗x = e)) (6.6)

∀x∀y x ∗ y = y ∗x (6.7)

over the same signature.

6.1.6 Fields

Example 6.8 (Commutative field) A commutative field is a model of the theory
made of the axioms of equality and of the formulas

∀x∀y∀z (x + (y + z) = (x + y)+ z) (6.8)

∀x∀y(x + y = y +x) (6.9)

∀x(x +0 = x) (6.10)

∀x∃y(x + y = 0) (6.11)

∀x∀y∀z x ∗ (y + z) = x ∗ y +x ∗ z (6.12)

∀x∀y∀z ((x ∗ y)∗ z) = (x ∗ (y ∗ z)) (6.13)

∀x∀y (x ∗ y = y ∗x) (6.14)

∀x (x ∗1 = x) (6.15)

∀x∃y(x = 0∨x ∗ y = 1) (6.16)

¬1 = 0 (6.17)

over a signature with two symbols of constants 0 and 1, two symbols of functions
+ and ∗ of arity 2, and the relation symbol = of arity 2.

For example, R and Cwith the usual interpretation are models of these theories.
If we add to the theory the formula Fp defined by 1+ ·· · +1 = 0, where 1 is re-

peated p times, the models are the fields of characteristic p: For example, Zp , when
p is some prime integer.

If we want to describe a field of characteristic 0, we must consider the theory
made of the previous axioms, and the union of the negation of the axioms Fp for all
prime integer p.

Example 6.9 (Algebraically closed field) For every integer n, we consider the for-
mula Gn

∀x0∀x1 · · ·∀xn−1∃x(x0 +x1 ∗x +x2 ∗x2 +·· ·+xn−1 ∗xn−1 +xn = 0)

where the reader would have guessed that xk is x∗·· ·∗x with x repeated k times.
An algebraically closed field is a model of the theory of commutative fields

and of the union of the formulas Gn for n ∈N.
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For example, C is algebraically closed. R is not algebraically closed, since x2 +1
has no real root.

6.1.7 Robinson Arithmetic

We can also try to axiomatise the integers. Here is a first attempt.

Example 6.10 (Robinson arithmetic) Consider the signature made of the con-
stant symbol 0, of the unary function symbol s, and of two binary function sym-
bols + and ∗, and of binary relation symbols < and =.

The axioms of Robinson arithmetic are the axioms of equality and

∀x ¬s(x) = 0 (6.18)

∀x ∀y (s(x) = s(y) ⇒ x = y) (6.19)

∀x (x = 0∨∃y s(y) = x) (6.20)

∀x 0+x = x (6.21)

∀x s(x)+ y = s(x + y) (6.22)

∀x 0∗x = 0 (6.23)

∀x s(x)∗ y = x ∗ y + y (6.24)

(6.25)

The structure whose base set is the integers, and where + is interpreted by ad-
dition, ∗ by multiplication, and s(x) by x +1 is a model of this theory. We call this
model the standard model of the integers.

Observe that we can define in any model of the previous axioms some order, by
the rule x < y if and only if ∃z (x + s(z) = y).

An alternative is to take < as a primitive relation symbol of arity 2 and add the
axioms

∀x ¬x < 0 (6.26)

∀x 0 = x ∨0 < x (6.27)

∀x ∀y (x < y ⇔ (s(x) < y ∨ s(x) = y)) (6.28)

∀x ∀y (x < s(y) ⇔ (x < y ∨x = y)) (6.29)

Exercise 6.5 Prove that the order defined by the rule x < y if and only if
∃z (x + s(z) = y) satisfies these formulas.
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Exercise 6.6 (solution on page 232) Let n and m two integers. We write
sn(0) for s(s(· · · s(0))) with s repeated n times, with the convention that s(0) =
0.

Prove by recurrence that

sn(0)+ sm(0) = sn+m(0).

Find some model of Robinson axioms where two elements a and b are
such that a +b ̸= b +a.

Deduce that Robinson axioms are not sufficient to axiomatise the inte-
gers: There are other models that the standard model of the integers to these
axioms.

Exercise 6.7 Add ∀x∀y(x + y = y + x) to previous axioms to guarantee the
commutativity of addition. Produce a model of the previous axioms that is
not the standard model of the integers: For example, with tow elements a
and b such that a ∗b ̸= b ∗a.

Instead of trying to add certain axioms in order to guarantee that properties such
as commutativity of addition and of multiplication, we will consider a family of ax-
ioms.

6.1.8 Peano arithmetic

Example 6.11 (Peano arithmetic) Consider a signature made of the constant
symbol 0, for the unary function symbol s, and of two binary function symbols +
and ∗, and of binary relation symbol =.

The axioms of Peano arithmetic are the axioms of equality and

∀x ¬(s(x) = 0) (6.30)

∀x∀y (s(x) = s(y) ⇒ x = y) (6.31)

∀x (x = 0∨∃y s(y) = x) (6.32)

∀x 0+x = x (6.33)

∀x s(x)+ y = s(x + y) (6.34)

∀x 0∗x = 0 (6.35)

∀x s(x)∗ y = x ∗ y + y (6.36)

(6.37)

and the set of all the formulas of the form

∀x1 · · ·∀xn((F (0, x1, · · · , xn)∧∀x0(F (x0, x1, · · · , xn) ⇒ F (s(x0), x1, · · · , xn)))
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⇒∀x0F (x0, x1, · · · , xn)) (6.38)

where n in any integer, and F (x0, · · · , xn) is any formula of free variables x0, · · · , xn .

There are hence an infinity of axioms. The last axioms aims at capturing reason-
ing’s by recurrence that are usually done on the integers.

Of course, these axioms guarantee the following property: The standard model
of the integers is model of these axioms

Exercise 6.8 Prove that the axiom ∀x (x = 0∨∃y s(y) = x) is actually use-
less: This formula is a consequence of the others.

One clear interest is that we have now:

Exercise 6.9 (solution on page 233) Prove that in any model of Peano ax-
ioms, the addition is commutative: The formula ∀x∀y(x+y = y+x) is true.

Exercise 6.10 Prove that in any model of Peano axioms, the multiplication
is commutative: The formula ∀x∀y(x ∗ y = y ∗x) is true.

In other words, this family of axioms is sufficient to guarantee a huge number of
properties that are true on the integers.

We will see later on (incompleteness theorem) that there remain some other
models than the standard integers to Peano axioms.

6.2 Completeness

The completeness theorem, due to Kurt Gödel, sometimes called the first Gödel the-
orem, is relating the notion of completeness to the notion of provability, by demon-
strating that the two notions are the same.

6.2.1 Consequences

The notion of consequence is easy to define.

Definition 6.5 (Consequence) Let F be a formula. The formula F is said to be
a (semantic) consequence of a theory T if any model of the theory T is a model
of F . We write in this case T |=F .

Example 6.12 For example, the formula ∀x∀y x ∗ y = y ∗ x, which expresses
the commutativity , is not a consequence of the theory of groups (Definition 6.6),
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since there are groups which are not commutative.

Example 6.13 We can prove that the formula ∀x 0+ x = x is a consequence of
Peano axioms.

Example 6.14 The exercise 6.6 proves that the formula∀x∀y(x+y = y+x) (com-
mutativity of addition) is not a consequence of Robinson axioms.

6.2.2 Demonstration

We need to fix a notion of demonstration. We will do it, but let’s first say that we
have a notion of demonstration, such that we write T ⊢F if one can prove the closed
formula F from the axioms of theory T .

We expect at minimum from this notion of proof to be valid: That is to say to
derive uniquely consequences: If F is a closed formula, and if T ⊢ F , then F is a
consequence of T .

6.2.3 Statement of completeness theorem

The completeness theorem states that actually we can succeed to reach all the con-
sequences: The relations |= and ⊢ are the same.

Theorem 6.1 (Completness theorem) Let T be a theory over a denumerable
signature. Let F be some closed formula. F is a consequence of T if and only if
F is provable from T .

6.2.4 Meaning of the theorem

Let’s take some time to understand what it does mean: In other words, the provable
statements are precisely those which are true in every model of the theory.

This means in particular that:

• if some closed formula F is not provable, then there must exists a model that
is not a model of F .

• if a closed formula F is true in any model of the axioms of the theory, then F is
provable.

Example 6.15 For example, the formula ∀x∀y x∗ y = y ∗x, which expresses the
commutativity, is not provable from the axioms of the theory of groups.
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Example 6.16 The formula ∀x 0+x = x is provable from the Peano axioms.

6.2.5 Other formulation of the theorem

We say that a theory T is coherent if there is no formula F such that T ⊢ F and
T ⊢¬F .

We will see while doing the proof that the following also holds:

Theorem 6.2 (Théorème de complétude) Let T be a theory over some denu-
merable signature. T has a model if and only if T is coherent.

6.3 Proof of completeness theorem

6.3.1 A deduction system

We need to define a notion of demonstration. We choose to consider a notion of
demonstration based on the notion of proof à la Frege and Hilbert, that is to say
based on the modus ponens.

With respect to propositional calculus, we are not using anymore only the modus
ponens rule, but also a generalisation rule: If F is a formula and if x is some variable,
the generalisation rule deduces ∀xF from F .

One ca be troubled by this rule, but this is nothing but what is regularly done in
the common reasoning: If we succeed to prove F (x) without any particular hypoth-
esis on x, then we know that ∀xF (x).

We then consider a certain number of axioms:

Definition 6.6 (Axiomes logiques du calcul des prédicats) The logical axioms
of the predicate calculus are:

1. every instance of the tautologies of propositional calculus;

2. the axioms of quantifiers, that is to say:

(a) the formulas of the form (∃xF ⇔ ¬∀x¬F ), where F is any formula
and x is an arbitrary variable;

(b) the formulas of the form (∀x(F ⇒ G) ⇒ (F ⇒∀xG)) where F and G
are arbitrary formulas and x is a variable that has no free occurrence
in F ;

(c) the formulas of the form (∀xF ⇒ F (t/x)) where F is a formula, t is
a term and no free occurrence of x in F is covered by some quantifier
bounding a variable of t , where F (t/x) denotes the substitution of x
by t .
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Exercise 6.11 Prove that the logical axioms are valid.

Remark 6.6 We could not have put all the tautologies of propositional calculus,
and, as we did for propositional calculus, restrict to certain axioms, essentially
the axioms of Boolean logic. We does so here only to make the proofs simpler, but
this could be possible and it would still work.

We obtain the notion of demonstration.

Definition 6.7 (Demonstration by modus ponens and generalisation) Let T be
at theory and let F be some formula. A proof of F from T is a finite sequence
F1,F2, · · · ,Fn of formulas such that Fn is equal to F , and for all i , either Fi is
in T , or Fi is some logical axiom, or Fi is obtained by modus ponens from two
formulas F j ,Fk with j < i and k < i , or Fi is obtained by generalisation from a
formula F j with j < i .

We write T ⊢F if F is provable from T .

6.3.2 Finiteness theorem

We obtain first easily through the proof the finiteness theorem.

Theorem 6.3 (Finiteness theorem) For every theory T , and for any formula F ,
if T ⊢F , then there exists a finite subset T0 of T such that T0⊢F .

Proof: A demonstration is a finite sequence of formulas F1, F2, · · · ,Fn . Con-
sequently, it is using only a finite number of formulas, hence a finite subset T0 of
formulas of T . This demonstration is also a demonstration of F in the theory T0. □

Corollary 6.1 If T is a theory such that all finite subsets are coherent, then T is
coherent.

Proof: Otherwise T proves (F ∧¬F ), for some formula F , and by the finiteness
formula, we deduce that there exists a finite subset T0 of T that also proves (F∧¬F ).
□

6.3.3 Some technical results

We need the following results, whose proofs are coming from a game on writing and
rewriting on the demonstrations.

First of all an observation, but that has its importance:

Lemma 6.1 If a theory T is not coherent, then any formula is provable in T .
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Proof: Indeed, suppose that T ⊢ F and that T ⊢ ¬F , and let G be some ar-
bitrary formula. One can then put one after the other a demonstration of F and a
demonstration of ¬F . To obtain a demonstration of G , it suffices to add the follow-
ing formulas to this sequence: The tautology F ⇒ (¬F ⇒ G). The formula ¬F ⇒ G
which can then be obtained by modus ponens, since F has already appeared. Then
the formula G , which can be obtained by modus ponens, since ¬F has already ap-
peared. □

Lemma 6.2 (Deduction lemma) Suppose that T ∪ {F } ⊢G, with F some closed
formula. Then T ⊢(F ⇒G).

Proof: From a demonstration G0G1 · · ·Gn of G in T ∪{F }, we construct a demon-
stration of (F ⇒G) in T by inserting in the sequence (F ⇒G0)(F ⇒G1) · · · (F ⇒Gn).

If Gi is a tautology, then there is nothing to do, since (F ⇒Gi ) is also a tautology.
If Gi is F , then there is nothing to do, since (F ⇒Gi ) is a tautology.
If Gi is an axiom of quantifiers or an element of T , then it suffices to insert 1

between (F ⇒ Gi−1) and (F ⇒ Gi ) the formulas Gi and (Gi ⇒ (F ⇒ Gi )) (which is a
tautology).

Suppose now that Gi is obtained by modus ponens: There are some integers
j ,k < i such that Gk is (G j ⇒ Gi ). We insert then between (F ⇒ Gi−1) and (F ⇒ Gi )
the formulas;

1. ((F ⇒G j ) ⇒ ((F ⇒ (G j ⇒Gi )) ⇒ (F ⇒Gi ))) (a tautology);

2. (F ⇒ (G j ⇒ Gi )) ⇒ (F ⇒ Gi ) that is obtained from modus ponens from the
previous and thanks to (F ⇒G j ) which has already appeared;

3. (F ⇒ Gi ) is then deduced by modus ponens from this last formula and from
(F ⇒ (G j ⇒Gi )), that has already appeared since it is (F ⇒Gk ).

Suppose at last that Gi is obtained by generalisation from G j with j < i . We insert
in this case between (F ⇒Gi−1) and (F ⇒Gi ) the formulas:

1. ∀x(F ⇒G j ) obtained by generalisation starting from (F ⇒G j );

2. (∀x(F ⇒G j ) ⇒ (F ⇒∀xG j )) (a quantifier axiom). F being a closed formula, x
is not free;

3. (F ⇒Gi ) is then deduced by modus ponens from the two previous.

□
The corollary that follows can be seen as the justification of reasoning by contra-

dictions.

Corollary 6.2 T ⊢ F if and only if T ∪ {¬F } is not coherent.

1For i = 0, it suffices to position this formula at the beginning.
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Proof: It is clear that if T ⊢ F then T ∪ {¬F } is not coherent. Conversely, if
T ∪ {¬F } is not coherent, it proves any formula, and in particular F by Lemma 6.1.
Now, by the deduction lemma above, we obtain that T ⊢¬F ⇒ F . Now, (¬F ⇒ F ) ⇒
F is a tautology, which proves that we have T ⊢ F . □

Lemma 6.3 Let T be at theory, and let F (x) be a formula whose only free vari-
able is x. Let c be some constant symbol that is not appearing in F nor in T . If
T ⊢ F (c/x) then T ⊢∀xF (x).

Proof: Consider a demonstration F1F2 · · ·Fn of F (c/x) in T . We consider a vari-
able w that is in none of the formulas Fi and we call Ki the formula obtained by
replacing in Fi the symbol c by w .

It turns out that this provides a proof of F (w/x): If Fi is some logical axiom, then
so does Ki ; If Fi is deduced by modus ponens, and if Fi ∈T then Ki is Fi .

By generalisation, we hence obtain a proof of ∀wF (w/x), and by the remark that
follows, we can then obtain a proof of ∀xF (x). □

Remark 6.7 If w is a variable that has no occurrence in F (nor free, nor bound),
then we can prove ∀wF (w/x) ⇒ ∀xF : Indeed, since w has no occurrence in
F , we can then prove ∀wF (w/x) ⇒ F , (axiom (c) of quantifiers, observing that
(F (w/x))(x/w) = F with these hypotheses). By generalisation, we obtain∀x(∀wF (w/x) ⇒
F ), and since x is not free in ∀wF (w/x), the formula ∀x(∀wF (w/x) ⇒ F ) ⇒
(∀wF (w/x) ⇒∀xF ) is among the axioms (b) of quantifiers, which allow to ob-
tain ∀wF (w/x) ⇒∀xF by modus ponens.

6.3.4 Validity of the deduction system

The validity of the proof method is easy to obtain.

Theorem 6.4 (Validity) Let T be a theory. Let F be some formula.
If T ⊢F , then any model of T is a model of the universal closure of F .

Proof: It suffices to check that the logical axioms are valid, and that modus po-
nens and generalisation can only infer some valid facts in any model of T . □

This is the easy direction of the completeness theorem.

6.3.5 Completeness of the deduction system

The other direction consists in proving that if F is a consequence of T , then F can
be proved by our proof method.

Definition 6.8

We say that a theory T is complete if for any closed formula F , we have T ⊢ F
or T ⊢¬F .

We say that a theory T admits some Henkin witnesses if for any formula F (x)
with some free variable x, there exists some constant symbol c in the signature
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such that (∃xF (x) ⇒ F (c)) is a formula of the theory T .

The proof of completeness theorem due to Henkin that we will present runs in
two steps.

1. We prove that any coherent theory, complete, with Henkin witnesses admits a
model.

2. We prove that any consistent theory admits some with these three properties.

Lemma 6.4 If T is some coherent, complete, with Henkin witnesses, then T has
a model.

Proof: The trick is to construct from scratch a model, whose base set (domain) is
the set M of closed terms on the signature of the theory: This domain is non-empty,
since the signature has at least the constants.

The structure M is defined in the following way:

1. If c is a constant, the interpretation cM of c is the constant c itself.

2. If f is a function symbol of arity n, its interpretation f M is the function that
to closed terms t1, · · · , tn associate the closed term f (t1, · · · , tn).

3. If R is a relation symbol of arity n, its interpretation RM is the subset of M n

made of the (t1, · · · , tn) such that T ⊢ R(t1, · · · , tn).

We observe that the structure that is obtained satisfies the following property
For any closed formula F , T ⊢ F if and only if M is a model of F . This is proved by
structural induction on F .

The property is true for the atomic formulas.
Because of the properties of the quantifiers and connectors, and because of the

possibility of using occurrences of tautologies of propositional calculus in our proof
method, it suffices to get convinced of this fact inductively on the formulas of type
¬G , (G ∨H) and ∀xG .

1. Case ¬G : Since T is complete, T ⊢ ¬G if and only if T ̸⊢ G , which means
inductively M ̸|=G , or if one prefers M |= ¬G .

2. Case (G ∨ H): Suppose M |= (G ∨ H), and so M |= G or M |= H . In the first
case for example, by induction hypothesis, we have T ⊢ G , and since (G ⇒
(G ∨ H)) is a tautology, we have T ⊢ (G ∨ H). Conversely, suppose that T ⊢
(G∨H). Si T ⊢G then by the induction hypothesisM |=G and soM |= (G∨H).
Otherwise, this is because T ̸⊢ G , and since the theory is complete, we have
T ⊢¬G . But since (G ∨H ⇒ (¬G ⇒ H)) is a tautology, we obtain that T ⊢ H
and by the induction hypothesis, M |= H and so M |= (G ∨H).

3. Case ∃xG(x): If M |= ∃xG(x) this is because there is some closed term t such
that M |= G(t/x). By induction hypothesis, T ⊢ G(t/x). But it is easy to find
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a demonstration of ∃xG(x) from a demonstration of G(t/x). Conversely, sup-
pose that T ⊢ ∃xG(x). Thanks to Henkin witnesses, we deduce that there
exists some constant c such that T ⊢ G(c/x), and by induction hypothesis
M |=G(c/x), and so M |= ∃xG(x).

□
There remains the second step. An extension of at theory T is a theory T ′ that

contains T .

Proposition 6.2 Every coherent theory T on a countable signature Σ has some
extension T ′ on a denumerable signature Σ′ (with Σ′ that contains Σ) that is
coherent, complete and with Henkin witnesses.

Before proving this property, let us discuss what we are obtaining: Since a model
of T ′ is a model of T , the previous lemma and the previous proposition permit first
to obtain:

Corollary 6.3 A denumerable coherent theory has a model.

The following remark is obtained by playing with definitions:

Proposition 6.3 For every theory T and for every closed formula F , F is a con-
sequence of T if and only if T ∪ {¬F } has no model.

Proof: If F is a consequence of T , then by definition every model of T is a model
of F , in other words, there is no model of T ∪ {¬F }. The converse is trivial. □

We obtain with this remark exactly the completeness theorem (or the missing
direction of what we called the completeness theorem).

Theorem 6.5 Let F be some closed formula. If F is a consequence of the theory
T , then T ⊢ F .

Proof: If T does not prove F , then T ∪ {¬F } is coherent: By the previous corol-
lary, T ∪{¬F } has a model. This means that F is not a consequence of the theory T .
□

There remains to prove Proposition 6.2.
Proof: The signature Σ′ is obtained by adding some denumerable number of

new constants to the signature Σ. The obtained signature Σ′ remains denumerable
and we can enumerate the closed formulas (Fn)n∈N of Σ′. The theory T ′ is obtained
as the union of a increasing sequence of theories Tn , defined by recurrence, starting
from T0 = T . Suppose that Tn is constructed and coherent. To construct Tn+1

we consider the formula Fn+1 in the enumeration of the closed formulas of Σ′. If
Tn ∪Fn+1 is coherent, then we let Gn = Fn+1, otherwise we let Gn = ¬Fn+1. In the
two cases Tn ∪ {Gn} is coherent.

The theory Tn+1 is defined by:

1. Tn+1 =Tn ∪ {Gn} if Gn is not of the form ∃xH .
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2. otherwise: Tn+1 = Tn ∪ {Gn , H(c/x)} where c is a new constant symbol that
is not appearing in any formula of Tn ∪ {Gn}: There is always such a symbol,
there there is a finite number of symbols in Tn ∪ {Gn}.

The theory Tn+1 is coherent: Indeed, if it were not, this would mean that Gn

would be of the form ∃xH , and that Tn ∪ {∃xH } ⊢ ¬H(c/x). By the choice of the
constant c, and by Lemma 6.3, we obtain that Tn ∪ {∃xH } ⊢ ∀x¬H(x), which is im-
possible since otherwise Tn would not be coherent.

The theory T ′ = ⋃
n∈NTn defined as the union of the theories Tn is coherent

since any finite subset of it is contained in one of the theories Tn , and hence is co-
herent.

The theory T ′ is also complete: If F is some closed formula of Σ′, it appears at
some moment in the enumeration of the formulas Fn , and by construction, either
Fn ∈Tn or ¬Fn ∈Tn .

Finally the theory T ′ has some Henkin witnesses: If H(x) is a formula with the
free variable x, then the formula ∃xH appears as a formula in the enumeration of the
formulas Fn . There are then two cases: either ¬Fn ∈Tn+1 or there is some constant
c such that H(c/x) ∈Tn+1. In the two cases, Tn+1 ⊢∃xH(x) ⇒ H(c/x), which proves
that (∃xH(x) ⇒ H(c/x)) is in T ′ (otherwise its negation would be there, and T ′
would not be coherent). □

6.4 Compactness

Observe that we have also established some other facts.

Theorem 6.6 (Compactness theorem) Let T a theory on some denumerable
signature such that any finite subset of T has a model. Then T has a model.

Proof: Consider a finite subset of such a theory T . This subset is coherent since
it has a model. T is hence a theory such that any finite subset is coherent. By finite-
ness theorem, this means that the theory itself is coherent.

By Corollary 6.3, this means that T has a model. □

Exercise 6.12 (solution on page 233) Use compactness theorem to prove
that there exists some non-standard model of Peano axioms.

6.5 Other consequences

Theorem 6.7 (Löwenheim-Skolem) If T is a theory on some denumerable sig-
nature that has a model, then it has a model whose base set is denumerable.
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Exercise 6.13 (solution on page 233) Prove the theorem.

6.6 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
[Cori & Lascar, 1993a], [Dowek, 2008] or [Lassaigne & de Rougemont, 2004].

Bibliography This chapter has been written by essentially using the books [Cori & Lascar, 1993a]
and [Lassaigne & de Rougemont, 2004].



Chapter 7

Turing machines

We have used many times up to know the notion of algorithm but without having
provided a formal definition. Intuitively, one can say that an algorithm is an auto-
matic method, that can be implemented on some computer, to solve a given prob-
lem. For example, the familiar techniques to perform an addition, or multiplication
or a division on numbers learned at elementary school are algorithms. The tech-
niques discussed to evaluate the truth value of a propositional formula from the
value of its variables are also algorithms. More generally, we have discussed some
proof methods for propositional calculus or for predicate calculus that can be seen
as algorithms.

Example 7.1 The following example taken from the manual of package TikZ-
PGF version 2.0, inspired in turn from the Elements of Euclid, can be considered
as an algorithm. It provides a method to draw an equilateral triangle with edge
AB.

A
B

D
E

C

Algorithm to construct a equilateral
triangle with edge AB: draw a circle of

center A and radius AB; draw the cir-

cle of center B of radius AB. Name C

one of the intersection of the two cir-

cles. The triangle ABC is the desired so-

lution.

We will see in the following chapters that not all the problems can be solved by
algorithms, and even for problems very easy to formulate: For example,

• there is no algorithm to determine if a given closed formula of predicate cal-
culus is valid in the general case;

101
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. . . B B B B B a b a a b B B B B B B B B B B . . .

q0

Figure 7.1: Turing machine. The machine is on the initial state of a computation on
word abaab.

• there is no algorithm to determine if a multivariate polynomial (i.e. with sev-
eral variables) with integer coefficients has an integer root (Hilbert 10th prob-
lem).

Historically, it was actually the formalization of the notion of proofs in mathe-
matics and the question of limits of formal proof systems that led to the models that
we will discuss. It was later understood that the notion captured by these models
was more than simply the formalization of the notion of proof and that it was actu-
ally also a formalization of everything that can be computed by a digital machine.
This remains true today since today’s computers are digital.

Furthermore, several formalizations have been proposed, in an independent
way, using at first sight very different notions: In particular, Alonzo Church in 1936,
using the formalism of λ-calculus,, Alan Turing in 1936, using what is now called the
Turing machines, or Emil Post in 1936, using systems based on very simple rules,
called Post systems. Later, it was shown that these formalisms are all equivalent.

The objective of this chapter is to describe the Turing machine model. In the
next chapter, we will define a few other models of computation and will show that
they are equivalent to the Turing machine model.

We will then by talk about the Church-Turing thesis.
The models that we are going to describe can all be considered as very abstract,

and might at first sight give the impression to be very limited, and far from being
able to cover everything that can be programmed using today’s languages such as
Python, CAML or JAVA. The main objective of this chapter and of the next one is to
convince the reader that this is NOT the case: Everything that can be programmed
can actually be programmed using these “basic” models.

7.1 Turing machines

7.1.1 Ingredients

A (deterministic) Turing machine (See Figure 7.1) is composed of the following ele-
ments:

1. An infinite memory of the form of a tape. The tape is divided in cells. Each cell
can contain an element of a set Σ (i.e. of some alphabet). We assume that the
alphabet Σ is some finite set.
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2. a (reading/writing) head that can move along the tape.

3. A program given as a transition function that, for every internal state q of the
machine, among a finite number possible internal states Q, gives according to
the symbol under the reading head:

(a) the next internal state q ′ ∈Q;

(b) the new element of Σ to write in place of the element of M currently in
front of the head;

(c) a moving direction for the reading head.

The execution of a Turing machine on some word w ∈Σ∗ can then be described
as follows: initially, the input w is on the tape, and the head is positioned in front
of the first letter of the word. The cells not corresponding to the input all contain
the element B (blank symbol), that is a special letter. The machine is in its initial
internal state q0: See Figure 7.1.

At every execution step, the machine, reads the symbol in front of the head, and,
according to its internal state and this symbol, following its program, it:

• replaces the symbol in front of the head by the one given by the transition
function;

• (possibly) moves its head to the left or to the right, according to the direction
given by the transition function;

• changes the internal state to the internal state given by the transition function.

The word w is said to be accepted when the execution of the Turing machine
eventually reaches the accepting internal state, in which case the execution of the
machine stops.

In the next section, we will give a formal definition of Turing machines and their
execution.

7.1.2 Description

Definition 7.1 (Turing machine) A Turing machine is an 8-uple

M = (Q,Σ,Γ,B,δ, q0, qa , qr )

where:

1. Q is the finite set of internal states;

2. Σ is a finite alphabet;

3. Γ is the finite tape alphabet with Σ⊂ Γ;

4. B ∈ Γ is the blank symbol;

5. q0 ∈Q is the initial state;
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6. qa ∈Q is the accepting state;

7. qr ∈Q is the rejecting state;

8. δ is the transition function: δ is a function (possibly partial) from Q ×Γ
to Q ×Γ× {←, |,→}. The symbol ← is used to mean a move to the left, | no
move, → a move to the right.

The language accepted by a Turing machine is defined using the notions of con-
figurations and of successor relation between configurations of a Turing machine. A
configuration consists of all the information required to describe the state of the ma-
chine at a given moment, and to determine the future states of the machine, namely:

• the internal state;

• the content of the tape;

• the position of the head.

We give a more formal definition.

Definition 7.2 (Configuration) A configuration is given by the description of
the tape, the position of the head, and the internal state.

To write a configuration, one difficulty is that the tape is infinite, and thus con-
sists of an infinite sequence of symbols of the tape alphabet Γ of the machine. How-
ever, we focus on finite executions, and consequently, at any moment of an execu-
tion, only a finite part of the tape has been visited by the machine. Indeed, initially
the tape contains an input of finite length, and at every step the machine moves its
head at most of one cell. As a consequence, after t steps, the head has moved at most
t cells to the left or to the right from its initial position. Consequently, the content
of the tape can be defined at any moment by a fixed sequence of symbols, the rest
containing only the blank symbol B.

To denote the position of the head, we could use some integer n ∈ Z. We will
actually use the following trick that has the advantage of simplifying the coming
definitions: Instead of seeing the tape as a finite sequence, we will represent it by
two finite sequences: The content of what is on the right and what is on the left of
the head. We will write the right prefix as usual from left to right. In contrast, we will
write the prefix corresponding to what is on the left of the head from right to left:
The interest is that the first letter of the left prefix is the letter immediately at the left
of the head. A configuration will hence be an element of Q ×Γ∗×Γ∗.

Formally:

Definition 7.3 (Denoting a configuration) A configuration is denoted by C =
(q,u, v), with u, v ∈ Γ∗, q ∈ Q: u and v respectively denote the content of the
tape respectively to the left and to the right of the head which is in front of the
first letter of v. We assume that the letters of u and of v are not containing the
blank symbol B.
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We make the convention that the word v is written from left to right (letter
number i +1 of v corresponds to the cell at the right of the letter/cell number i )
while the word u is written from right to left (the letter number i +1 of u corre-
sponds to the content of tape at the left of letter/cell number i , the first letter of u
being the cell immediately at the left of the head).

Example 7.2 The configuration of the machine represented on Figure 7.1 is (q0,ϵ, abaab).

We will sometimes write configurations in an other way.

Definition 7.4 (Alternative notation) The configuration (q,u, v) will also been
seen/denoted in some sections or chapters by uqv, keeping u and v written from
left to right.

Example 7.3 A configuration such as

. . . B B B c o m p u t e r B B B B B B B B B . . .

q

is encoded by configuration (q,moc, puter ), or sometimes by comqputer .

A configuration is said to be accepting if q = qa , rejecting if q = qr .
For w ∈ Σ∗, the initial configuration corresponding to w is the configuration

C [w] = (q0,ϵ, w).
We write: C⊢C ′ if the configuration C ′ is the immediate successor of configura-

tion C by the program (given by δ) of the Turing machine.
Formally, if C = (q,u, v) and if a denotes the first letter 1 of v , and if δ(q, a) =

(q ′, a′,m′) then C ⊢C ′ if C ′ = (q ′,u′, v ′), and

• if m′ = |, then u′ = u, and v ′ is obtained by replacing the first letter a of v by a′;

• if m′ =←, u′ is obtained by deleting the first letter a′′ of u, v ′ is obtained by
concatenating a′′ and the result of replacing the first letter a of v by a′;

• if m′ =→, u′ = a′u, and v ′ is obtained by deleting the first letter a of v .

1With the convention that the first letter of the empty word is the blank symbol B.
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Remark 7.1 The above rules are formalizing the changing of the cell in front of
the head from a to a′ and the corresponding potential shift of the tape to the right
or to the left.

Definition 7.5 (Accepted word) A word w ∈ Σ∗ is said to be accepted (in time
t) by the Turing machine, if there exists a sequence of configurations C1, · · · ,Ct

with:

1. C0 =C [w];

2. Ci ⊢Ci+1 for all i < t ;

3. none of the configurations Ci for i < t is accepting or rejecting

4. Ct is accepting.

Definition 7.6 (Rejected word) A word w ∈ Σ∗ is said to be rejected (in time
t) by the Turing machine, if there exists a sequence of configurations C1, · · · ,Ct

with:

1. C0 =C [w];

2. Ci ⊢Ci+1 for all i < t ;

3. none of the configurations Ci for i < t is accepting or rejecting.

4. Ct is rejecting.

Definition 7.7 (Machine that loops on a word) We say that a Turing machine
loops on a word w, if w is neither accepted nor rejected.

Remark 7.2 For every word w we thus have exactly one of the following three
exclusive cases:

1. it is accepted by the Turing machine;

2. it is rejected by the Turing machine;

3. the machine loops on this word.

Remark 7.3 The terminology loops means simply that the machine is not halt-
ing on this word: This does not necessarily mean that one repeats for ever the
same instructions. The machine can loop for several reasons. For example, since
it reaches a configuration that has no successor configuration that is defined,
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or because it enters a complex behaviours that produces an infinite sequence of
configurations not accepting nor rejecting.

More generally, one calls computation of M on a word w ∈Σ∗, a (finite or infinite)
sequence of configurations (Ci )i∈N such that C0 =C [w] and for all i , Ci ⊢Ci+1, with
the convention that an accepting or rejecting configuration has no successor.

Definition 7.8 (Language accepted by a machine) The language L ⊂Σ∗ accepted
by Turing machine M is the set of words w that are accepted by the machine. It
is denoted by L(M). We also call L(M) as the language recognized by M.

A machine that does not halt is usually undesirable. Thus, we generally try to
guarantee a stronger property:

Definition 7.9 (Langage decided by a machine) One says that a language L ⊂
Σ∗ is decided by the machine M if:

• for every w ∈ L, w is accepted by M;

• for every w ̸∈ L (=otherwise), w is rejected by M.

In other words, the machine accepts L and terminates on every input (i.e. it never
loops).

One says in that case that the machine M decides L.

7.1.3 Programming with Turing machines

Programming with Turing machines is extremely low level. We will however see that
one can really program many things with this model. The first step is to get con-
vinced that we can program solutions to many problems with Turing machines. To
say the truth, the only way to get convinced is to try to program by oneself with Tur-
ing machines, for example by trying to solve the following exercises.

Exercise 7.1 Construct a Turing machine that accepts exactly the words w
on alphabet Σ= {0,1} of the form 0n1n , n ∈N.

Here is a solution. Consider a machine Q = {q0, q1, q2, q3, q4}, Γ= {0,1, X ,Y ,B},
the accepting state q4 and the transition function δ such that:

• δ(q0,0) = (q1, X ,→);

• δ(q0,Y ) = (q3,Y ,→);

• δ(q1,0) = (q1,0,→);

• δ(q1,1) = (q2,Y ,←);

• δ(q1,Y ) = (q1,Y ,→);
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• δ(q2,0) = (q2,0,←);

• δ(q2, X ) = (q0, X ,→);

• δ(q2,Y ) = (q2,Y ,←);

• δ(q3,Y ) = (q3,Y ,→);

• δ(q3,B) = (q4,B ,→).

As one can see, a description of a Turing machine in this way is essentially un-
readable. We thus prefer a representation of the program of a machine (the function
δ) in the form of a graph: The vertices of the graph represent the states of the ma-
chine. Every transition δ(q, a) = (q ′, a′,m) is represented with an arc from the state
q to the state q ′ labeled by a/a′ m. The initial state is marked with an incoming arc.
The accepting state is marked with a double circle.

Example 7.4 For example, the transitionδ(q0,0) = (q1, X ,→) is represented graph-
ically by:

q0 q1
0/X →

With these conventions, the previous program can be represented by:

q0start q1 q2

q3 q4

0/X →

Y/Y →

0/0 →
Y/Y →

1/Y ←

0/0 ←

X/X → Y/Y ←

Y/Y →

B/B →

How does this program work? During a computation, the part of the tape that
the machine has visited will be of the form X ∗0∗Y ∗1∗. Every time that a 0 is read, it
is replaced by X and one goes to state q1 which starts the following sub-procedure:
One moves right as long as a 00 or a Y is read. As soon as a 1 is reached, it is trans-
formed into a Y , and one goes back to the left until one reaches a X (the X that has
been written) and then one does a one cell right shift.

Doing so, for each 0 that is erased (i.e. marked by a X ), we will have erased a 1
(i.e. marked a Y ). If all the 0 are marked and one reaches a Y , one goes to state q3,
which has the effect of checking that what is on the right is indeed only consists of
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Y ’s. Once everything has been read, i.e. a B is reached, one accepts, i.e. one goes to
state q4.

Of course, a true proof of the correctness of this algorithm would consist in prov-
ing that if a word is accepted, it is necessarily of type 0n1n . We leave to the reader to
get convinced of this.

Example 7.5 Here is an example of accepting computation for M: q00011 ⊢
X q1011⊢ X 0q111⊢ X q20Y 1⊢ q2X 0Y 1⊢ X q00Y 1⊢ X X q1Y 1⊢ X X Y q11⊢ X X q2Y Y ⊢
X q2X Y Y ⊢ X X q0Y Y ⊢ X X Y q3Y ⊢ X X Y Y q3B⊢ X X Y Y Bq4B.

Definition 7.10 (Space-time diagram) One often represents a sequence of con-
figurations line by line: The line number i represents the i th configuration of the
computation, using the encoding of Definition 7.4. This representation is called
a space-time diagram of a machine.

Example 7.6 Here is the space-time diagram corresponding to the previous com-
putation on 0011.

. . . B B B B q0 0 0 1 1 B B B B B B B B B B B . . .

. . . B B B B X q1 0 1 1 B B B B B B B B B B B . . .

. . . B B B B X 0 q1 1 1 B B B B B B B B B B B . . .

. . . B B B B X q2 0 Y 1 B B B B B B B B B B B . . .

. . . B B B B q2 X 0 Y 1 B B B B B B B B B B B . . .

. . . B B B B X q0 0 Y 1 B B B B B B B B B B B . . .

. . . B B B B X X q1 Y 1 B B B B B B B B B B B . . .

. . . B B B B X X Y q1 1 B B B B B B B B B B B . . .

. . . B B B B X X q2 Y Y B B B B B B B B B B B . . .

. . . B B B B X q2 X Y Y B B B B B B B B B B B . . .

. . . B B B B X X q0 Y Y B B B B B B B B B B B . . .

. . . B B B B X X Y q3 Y B B B B B B B B B B B . . .

. . . B B B B X X Y Y q3 B B B B B B B B B B B . . .

. . . B B B B X X Y Y B q4 B B B B B B B B B B . . .

Example 7.7 Here is the space-time diagram of the computation of the machine
on 0010:
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. . . B B B B q0 0 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X q1 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X 0 q1 1 0 B B B B B B B B B B B . . .

. . . B B B B X q2 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B q2 X 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X q0 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X q1 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X Y q1 0 B B B B B B B B B B B . . .

. . . B B B B X X Y 0 q1 B B B B B B B B B B B . . .

Observe that in the last configuration no continuation is possible, and hence that
there is no accepting computation starting from 0010.

Exercise 7.2 (solution on page 234) [Subtraction in unary] Construct a Tur-
ing machine program that realizes a subtraction in unary: Starting from
a word of the form 0m10n , the machine stops with 0m⊖n on its tape sur-
rounded by blanks (where m⊖n is max(0,m −n)).

7.1.4 Some programming techniques

Here are a few programming techniques that are used for programming Turing ma-
chines.

The first consists in encoding some finite information in the internal state of the
machine. We will illustrate this on an example, where we will store the first read
character in the internal state. As long as the information to store is finite, this is
possible.

Exercise 7.3 Construct a Turing machine that reads the symbol in front of
the head and checks that this character letter is also the last letter of the
input word but does not appear anywhere else in the input.

If one fixes the symbol a0 ∈Σ of alphabet Σ, it is easy to construct a program that
checks that the symbol a0 is appearing nowhere but as the last letter on the right.
Indeed, consider:

q0start q2q1

∀a ̸= a0, a/a →

B/B ←a0/a0 →
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where ∀a ̸= a0 means that one repeats the transition a/a,→ for all symbols a ̸=
a0.

Now, to solve our problem, it is sufficient to read the first letter a0 and to copy
this program as many times as the number of letters in alphabet Σ. If Σ= {0,1,2} for
example:

qstart q0/0

q0/1

q0/2

q f

0/0 →

1/1 →

2/2 →

q1/0

∀a ̸= 0, a/a →

B/B ←

0/0 →

q1/1

∀a ̸= 1, a/a →

B/B ←1/1 →

q1/2

∀a ̸= 2, a/a → B/B ←

2/2 →

We are hence using the fact that this program is working on some states that can
be ordered pairs: here we use ordered pair qi / j with i ∈ {1,2}, and j ∈Σ.

A second technique is using subprocedures. Once again, we will illustrate this
with an example.

Exercise 7.4 [Multiplication in unary] Construct a Turing machine that
performs multiplication in unary: Starting from a word of the form 0m10n ,
the machine stops with 0m·n on its tape.

A possible strategy is the following:

1. the tape will contain a word of the form 0i 10n10kn for an integer k;

2. at every step, one will change a 0 of the first group into a blank, and one will
add n 0’s to the first group, to obtain the word 0i−110n10(k+1)n ;

3. by doing so, we will copy the group of n 0’s m times, once for every symbol of
the first group set to blank. When there is no blank left in the first group of 0’s,
there will consequently be m ·n 0’s in the last group;

4. the last step is to overwrite the prefix 10n1 with blanks.

The heart of the method is hence the subprocedure, that we will call Copy that
implements step 2: It transforms a configuration 0m−k 1q10n1(k−1)n into 0m−k 1q50n1kn .
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Here is a way to program this: If one starts in state q1 with such an input, we will
eventually go to state q5 with the correct result.

q1start q2

q3

q4

q5

0/X →
1/1 →

0/0 →

B/0 ←
1/1 ←

0/0 ←

X/X →1/1 ←

X/0 ←
1/1 →

Once we have this subprocedure, one can construct the global algorithm.

q0start

q6 q1 q5 q7 q8

q9

q10q11q12

0/B →

0/0 →

1/1 → 0/0 ← 1/1 ←

0/0 ←

0/0 ←

B/B →

B/B →

1/B →

0/B →

1/B →

where the dashed rectangle means “paste the program just describe for the sub-
procedure here”.

In this example we see that it is possible to program with Turing machines in
a modular way, by using subprocedures. In practise, this means pasting pieces of
program inside a program of a machine as in the example.

7.1.5 Applications

As we said before, the only way to understand all what can be programmed with a
Turing machine is trying to program them.

So here are a few exercises.
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Exercise 7.5 Construct a Turing machine that adds 1 to the number written
in binary (hence with 0 and 1’s) on its tape.

Exercise 7.6 Construct a Turing machine that subtracts 1 to the number
written in binary (hence with 0 and 1’s) on its tape.

Exercise 7.7 Construct a Turing machine that accepts the words with the
same number of 0’s and 1’s.

7.1.6 Variants of the notion of Turing machine

The Turing machine model is extremely robust.

Indeed, there are many possible variations of the model, but they do not change
what can be computed with these machines.

In this section, we will illustrate this by discussing several of these modifications.

Restriction to a binary alphabet

Proposition 7.1 Every Turing machine working over some arbitrary alphabet Σ
can be simulated by a Turing machine working over alphabet Σ = Γ with only
two letters (without counting the blank symbol).

Sketch of proof: The idea is that one can always encode the letters of the alpha-
bet by using a binary encoding. For example, if the alphabet Σ has 3 letters a, b,
and c, one can decide to encode a by 00, b by 01 and c by 10: See Figure 7.2. In the
general case, one just needs to use possibly more than 2 letters.

Of course, this may require first to initially transform the input in order to rewrite
it using this encoding.

One can then transform the program of a Turing machine M that works over
alphabet Σ into a program M ′ that works over this encoding.

For example, if the program of M contains an instruction that says that if M is
in state q and that the head reads a one must write c and move to the right, the
program of M ′ will consist in stating that if one is in state q and one reads 0 in front
of the head, and 0 on its right (and so what is on the right of the head starts by 00,
the encoding of a), then one must replace these two 0’s by 10 (i.e. the encoding of
c) and go to state q ′. By doing so, every time that a computation of M produces
a tape corresponding to some word w , then the machine M ′ will produce a tape
corresponding to the encoding of w in binary letter by letter. □
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Machine M on alphabet {a,b,c}

. . . B B B B B a b a a c b B B B B B B B B B . . .

q7

Machine M ′ simulating M on alphabet {0,1}.

. . . B B B B B 0 0 0 1 0 0 0 0 1 0 0 1 B B B . . .

q7

a b a a c b

Figure 7.2: Illustration of the proof of Proposition 7.1.

Turing machines with several tapes

One can also consider some Turing machines with several tapes, say k, where k is
some integer. Each of these k tapes has its own reading head. The machine still have
a finite number of internal states Q. Simply, now the transition function δ is not any
more a function of Q ×Γ to Q ×Γ× {←, |,→}. but from Q ×Γk to Q ×Γk × {←, |,→}k :
Depending of the the internal state of the machine and the symbols read by each of
the k heads, the transition function gives the new symbols to be written on each of
the tapes, and the movements for each of the heads.

It is possible to formalize this model, but we will not do so as this does not really
bring a new difficulty.

We will sketch the following result.

Proposition 7.2 Every Turing machine with k tapes can be simulated by a Tur-
ing machine with a unique tape.

Sketch of proof: The idea is that if a machine M works with k tapes on the al-
phabet Γ, one can simulate M by a machine M ′ with a unique tape that works on
alphabet (Γ× {0,1}∪ {#}) (which is still a finite alphabet).

The tape of M ′ contains the concatenation of the contents of all the tapes of M ,
separated by some marker #. We use (Γ× {0,1}∪ {#}) instead of (Γ∪ {#}) in order to
use 1 more bit of information for every cell to store the information "the read is in
front this cell".

M ′ will simulate step by step the transitions of M : To simulate a transition of
M , M ′ will scan from left to right its tape to determine the position of each of the
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tape 1

. . . B B B B B a b a a b B B B B B B B B B B . . .

tape 2

. . . B B B B B b c a a B B B B B B B B B B B . . .

tape 3

. . . B B B B B a a b a B B B B B B B B B B B . . .

q5

Figure 7.3: A Turing machine with 3 tapes

. . . B B B a b’ a a b # b c a a’ # a a b’ a B B . . .

q0

tape 1 tape 2 tape 3

Figure 7.4: Illustration of the proof of Proposition 7.2: Graphical representation of a
Turing machine with 1 tape simulating the machine with 3 tapes of Figure 7.3. On
this graphical representation, we write a primed letter when the bit “the head is in
front of this cell” is set to 1.
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reading heads, and the symbol in front of each of the heads (by memorizing these
symbols in its internal state). Once all the symbols in front of all the head known,
M ’ knows the symbols to be written and the movements to be done for each of the
heads: M ′ will scan again its tape from left to right to update its encoding of the of
the configuration of M . By doing so systematically transition after transition, M ′ will
perfectly simulate the evolution of M with unique tape: See Figure 7.1.6 □

Non-deterministic Turing machines

We can also introduce non-determinism in Turing machines: The definition of a
Turing machine is exactly as the notion of (deterministic) Turing machine except for
one point. δ is not a function from Q ×Γ to Q ×Γ× {←, |,→} anymore, but a relation
of the form

δ⊆ (Q ×Γ)× (Q ×Γ× {←, |,→}).

In other words, to a given internal state and a letter read in front of the head, δ is
not defining a unique triple of Q×Γ×{←, |,→}, but possibly a set of triples. Intuitively,
during an execution, the machine has the possibility to choose any triple.

Formally, this is expressed by the fact that one can go from configuration C to
successor configuration C ′ if and only one can go from C to C ′ (we will write this C ⊢
C ′) with previous definitions, but replacingδ(q, a) = (q ′, a′,m′) by ((q, a), (q ′, a′,m′)) ∈
δ. The other definitions are unchanged, and the same as for the deterministic Turing
machines.

The difference is that a non-deterministic Turing machine does not have a unique
execution on some input w but possibly several: Actually, the executions of the ma-
chine on a word w give rise to a tree of possibilities, and the idea is that one accepts
a word if one of the branches contains an accepting configuration.

The notion of word w accepted is (still) given by Definition 7.5.
The language L ⊂Σ∗ accepted by M is (still) the set of words w that are accepted

by the machine. We (still) denote it by L(M). We (still) also call L(M) the language
recognized by M .

One avoids in general in this context to talk of rejected word.
We will however say that a language L ⊂ Σ∗ is decided by M if it is accepted by a

machine that halts on every input: That is to say, for every w ∈ L, the machine has
(at least) ONE accepting computation that leads to some accepting configuration as
in Definition 7.5, and for every w ̸∈ L, ALL the computations of the machine lead to
some rejecting configuration.

One can prove the following result (we will do so in a following chapter).

Proposition 7.3 Any non-deterministic Turing machine can be simulated by a
deterministic Turing machine: A language L is accepted by a non-deterministic
Turing machine if and only if it is accepted by some (deterministic) Turing ma-
chine.

Obviously, one can consider a Turing machine as a particular non-deterministic
Turing machine. The non-trivial direction of the proposition is that one can always
simulate a non-deterministic machine by some deterministic one.
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In other words, allowing non-determinism does not extend the power of the
model, as long as one talks about computability, that is to say about the problems
that one can solve. We will see that this is not so direct when talking about efficiency,
i.e. complexity.

7.1.7 Locality of the notion of computation

We now give a fundamental property of the notion of computation that we will use
at several occasions, and that we invite the reader to meditate on:

Proposition 7.4 (Locality of the notion of computation) Consider the space-time
diagram of a machine M. We consider the possible contents of a subrectangle of
width 3 and height 2 in this diagram. For every machine M there is a finite num-
ber of possible contents that one can find in these rectangles. We call the possible
contents for the machine M the legal window : See Figure 7.6 for an illustration.

This even provides a characterization of the space-time diagrams of a given
machine: An array is a space-time diagram of M for some initial configuration
C0 if and only if its first line corresponds to C0, and furthermore in this array,
the content of all the subrectangles of width 3 and height 2 are among the legal
windows.

Proof: It is sufficient to look at all possible cases. This is very tedious, but not
difficult. □

We will come back to this. Forget this for now, and let us come back for now to
other models in next chapter.

Remark 7.4 Similar results can also be shown for other models. However, they
are often harder to formulate for them.

7.2 Bibliographic notes

Suggested readings To go further with all the mentioned notions in this chapter,
we suggest to read [Sipser, 1997], [Hopcroft & Ullman, 2000].

Bibliography This chapter has been written using the presentation of Turing ma-
chines in [Wolper, 2001], and discussions in [Hopcroft & Ullman, 2000] for the part
about their programming. The part on the (S)RAM is inspired by [Papadimitriou, 1994]
and [Jones, 1997].
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(a) . . . B B B B q0 0 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X q1 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X 0 q1 1 0 B B B B B B B B B B B . . .

. . . B B B B X q2 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B q2 X 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X q0 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X q1 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X Y q1 0 B B B B B B B B B B B . . .

. . . B B B B X X Y 0 q1 B B B B B B B B B B B . . .

1 0 B

Y 0 B
(b)

Figure 7.5: (a). The space-time diagram of Example 7.7. We show one 3×2 subrect-
angle with gray background. (b) The corresponding (legal) window.

a q1 b

q2 a c
(a)

a q1 b

a a q2
(b)

a a q1

a a b
(c)

# b a

# b a
(d)

a b a

a b q2
(e)

b b b

c b b
(f)

Figure 7.6: Some legal windows for a Turing machine M : each of them can be ob-
served on a 3×2 subrectangle of the space-time diagram of M .
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Figure 7.7: Some illegal windows for a certain Turing machine M with δ(q1,b) =
(q1,c,←). One cannot observe these contents in a 3×2 subrectangle of the space-
time diagram of M : Indeed, in (a), the middle symbol cannot be changed without
the head being next to it. In (b), the symbol at the bottom right should be c but not a,
according to the transition function. In (c), there cannot be two heads on the tape.



Chapter 8

A few other models of
computation

8.1 RAM

The Turing machine model may seem extremely rudimentary. However, it is in fact
extremely powerful, and it is able to capture the notion of computability in computer
science.

The objective of this chapter is to argue the following Church-Turing thesis: Ev-
ery computation that can be programmed by a digital computational device, such
as a modern computer, can be simulated by a Turing machine. In order to make this
plausible, we will introduce first a model very close (actually the closest that I know)
to the way that today’s computers work: The RAM model.

8.1.1 RAM model

The model of the RAM (Random Access Machine) is a computational model that is
close to today’s machine languages, and the way the processors of today work.

A RAM has registers that each contain a natural number (null when initialized,
i.e. if not yet used). The machine is assumed to have infinitely many registers, in-
dexed by integers. The authorized instructions depend of the processor that one
wants to model1 but in general they include the following:

1. copying the content of a register into another;

2. doing indirect addressing: Get/Write the content of a register whose index is
given by the value of some other register;

3. doing some very basic elementary operation on some particular register such
as for example adding 1, subtract 1 or test equality to 0 of a register;

1And actually, also of the reference book that one takes to formally describe the model.
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4. doing some other operation on a or several register(s), for example addition,
subtraction, multiplication, division, binary shifts or bitwise binary opera-
tions.

In the following, we will limit the discussion to the SRAM (Successor Random
Access Machine) model that only has instructions of type 1., 2. and 3. We will see later
that this does not really change things, as long as each of the allowed operations of
type 4. can be simulated by a Turing machine (and this is the case for all operations
mentioned above).

8.1.2 Simulation of a RISC machine by a Turing machine

We are going to show that any (S)RAM can be simulated by a Turing machine.
To help the understanding of the proof, we will reduce the set of instructions of

the RAM to a reduced set of instructions (RISC reduced instruction set) by using a
unique register x0 as an accumulator.

Definition 8.1 A RISC machine is a (S)RAM whose instructions are (only) of the
form:

1. x0 ← 0;

2. x0 ← x0 +1 ;

3. x0 ← x0 ⊖1 ;

4. if x0 = 0 then go to instruction number j ;

5. x0 ← xi ;

6. xi ← x0 ;

7. x0 ← xxi ;

8. xx0 ← xi .

Clearly, every SRAM program with instructions of type 1., 2. and 3. can be con-
verted to an equivalent RISC program, by replacing every instruction by instruc-
tions that do the equivalent operation by systematically using the accumulator x0 (if
needed).

Example 8.1 For example: the instruction xi ← x j can be replaced by the two
instructions x0 ← x j and then xi ← x0.

We will start with the following simulation:

Theorem 8.1 Every RISC machine can be simulated by a Turing machine.
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Proof: We describe how to construct a Turing machine that simulates the RISC
machine. The Turing machine has 4 tapes. The first two tapes are encoding the pairs
(i , xi ) for xi non null. The third tape encodes the accumulator x0 and the fourth tape
is used as a scratch tape.

More concretely, for every integer i , denote by 〈i 〉 its binary representation. The
first tape encodes a word of the form

.. .BB〈io〉B〈i1〉 · · ·B . . .〈ik〉BB · · · .

The second tape encodes a word of the form

.. .BB〈xio 〉B〈xi1〉 · · ·B . . .〈xik 〉BB · · ·

The heads of the first two tapes are on the second B. The third tape encodes 〈x0〉,
the head being at the left. We call this position of the heads the standard position.

The simulation is described for three examples. The reader will find it easy to
complete the other cases:

1. x0 ← x0 +1 : We increment the content of the third tape which by convention
contains the binary encoding of x0. To do so, the head of tape 3 moves right
until it reads a B symbol. It then moves left once. It then replaces the 1’s by
by 0’s, while moving to the left as long as as it reads 1’s. When a 0 or a B is
found, it is changed into a 1 and the head moves left until it comes back to the
standard position.

2. x23 ← x0 : The heads scan the tapes 1 and 2 to the right, block by block (we call
block a word delimited by two B’s), in parallel (i.e if head of tape 1 reads block
number i , then this is true for head of tape 2 and conversely), until the head of
tape 1 (and also of tape 2) reaches the end of tape 1, or until a block B10111B
(10111 is 23 in binary) is found on tape 1.

If the end of tape 1 is reached, this means that memory position 23 has never
been seen previously. One adds it by writing 10111 at the end of tape 1, and
one copies the content of tape 3 (the value of x0) onto tape 2. Afterwards, all
heads are moved back to the standard position.

Otherwise we have found B10111B on tape 1. By construction, the head of
tape 2 then points at the B after 〈x23〉. In that case, we must modify the part of
tape 3 containing 〈x23〉 which is done in the following way:

(a) One copies the content at the right of the head of tape 2 onto tape 4.

(b) One overwrites the content of x23 on tape 2 by the the content of tape 3
(the value of x0).

(c) One writes B, and one copies the content of tape 4 at the right of the head
of tape 2, in order to restore the rest of tape 2.

(d) One returns to the standard position.
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Figure 8.1: A machine with 3 stacks.

3. x0 ← xx23 : Starting from the left of tapes 1 and 2, one scans the tapes 1 and 2
going to the right, block by block, in parallel, until one reaches the end of tape
1, or a block B10111B (10111 is 23 in binary) is read.

If the end of tape 1 has been reached, one does nothing, since x23 values 0 and
tape 3 already contains 〈x0〉.
Otherwise, this means that we found B10111B on tape 1. One then reads 〈x23〉
on tape 2, that one copies on tape 4. As above, one scans tapes 1 and 2 in
parallel until one finds B〈x23〉B or the end of tape 1 is reached. If the end of
tape 1 is reached, then one writes 0 on tape 3, since xx23 = x0. Otherwise, one
copies the block corresponding to tape 2 on tape 3, since the block on tape 2
contains xx23 , and one returns to the standard position.

□

8.1.3 Simulation of a RAM by a Turing machine

Let us come back to the fact that we have reduced the set of possible operations of
an SR AM to instructions of type 1., 2. and 3. In fact, it is easy to see that one can deal
with all instructions of type 4., as long as the underlying operation can be computed
by a Turing machine: Every operation x0 ← x0 ‘‘operation’’ xi can be simulated as
above, as soon as “operation” corresponds to some computable operation.

8.2 Rudimentary models

The Turing machine model is extremely rudimentary. It turns out that one can con-
sider models that are even more rudimentary, and that are still able to simulate
them.
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Figure 8.2: The Turing machine from Example 7.3 seen as a 2-stacks machine.

8.2.1 Machines with k ≥ 2 stacks

A k-stack machine, has k stacks r1, r2, . . . ,rk . Each of this stacks corresponds to some
stack of elements of the finite alphabet Σ. The instructions of the machine permit
only to push a symbol on one of the stacks, read the symbol at the top of a stack, or
pop the symbol at the top of stack.

If one prefers, one can see each stack ri of elements of the finite alphabet Σ as a
word wi over alphabet Σ. Pushing (written push(i , a)) a symbol a ∈ Σ on this stack
consists in replacing wi by awi . Reading (written a ← top(r, i )) the symbol at the
top of this stack consists in reading the first letter of wi . Doing a pop on (written
pop(i )) this stack consists in deleting the first letter of wi .

Theorem 8.2 Every Turing machine can be simulated by a 2 stacks machine.

Proof: According to the formalization of Page 104, a configuration of a Turing
machine corresponds to C = (q,u, v), where u and v denote the content respectively
on left and on right of the head of tape i . One can see u and v as stacks: See Figure
8.2. If one reads the formalization Page 104 carefully, one sees that the operations
done by the program of a Turing machine to go from configuration C to its succes-
sor configuration C ′ coincide with operations that can be trivially coded by push,
pop, and top: One can construct a machine with 2 stacks, each stack encoding u or
v (the content on the right and on the left of the tape) and that simulate the Turing
machine step by step. For example, moving the head to the right, consists in reading
the top of the second stack (a ← top(2)), pushing this symbol a on the first stack
(push(1, a)), and doing a pop on the second stack (pop(2)). Moving the head to the
left, consists in reading the top of the first stack (a ← top(1)), pushing this symbol a
on the second stack (push(2, a)), and doing a pop on the first stack pop(1). Chang-
ing the symbol in front of the head into symbol a consists in doing a pop on the
second stack (pop(2)), and then pushing symbol a on second stack (push(2, a)). □
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8.2.2 Counter machines

We introduce now a model even more rudimentary: A counter machine has a finite
number k of counters r1,r2, · · · ,rk , which contain natural numbers. The instructions
of a counter machine allow only to test equality of a given counter to 0, increment
a given counter or decrement a given counter. Initially all the counters are set to 0,
except for the one encoding the input.

Remark 8.1 The machine is usually considered as computing functions over the
integers, or as recognizing languages defined as subsets of the integers. If one
wants to compute over words, say words over the alphabetΣ is {0,1}, this requires
to encode words into integers, for example by considering binary expansions.

Remark 8.2 We consider in this document that machines either halt or loop. Re-
jection is encoded in the coming simulation by the fact that the machine does
not halt. It would be possible also to consider counter machines with Accept and
Reject instructions, to simulate in a fine way acceptance and rejection of Turing
machines.

Remark 8.3 This is hence a (S)RAM, but with a extremely reduced set of instruc-
tions, and with furthermore a finite number of registers.

More formally, all the instructions of a counter machine are of the following 4
types:

• Inc(c, j ): counter c is incremented and then one goes to instruction j ;

• Decr(c, j ): counter c is decremented (if non null, unchanged otherwise) and
then one goes to instruction j ;

• IsZero(c, j ,k): one tests whether counter c is 0 and one goes to instruction j if
this is the case, or to instruction k otherwise;

• Halt: the computation is halted.

Example 8.2 For example, the following program with 3 counters

1. IsZero(1,5,2)

2. Decr(1,3)

3. Inc(3,4)

4. Inc(3,1)

5. Halt
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transforms (n,0,0) into (0,0,2n): If one starts with r1 = n, r2 = r3 = 0, then when
instruction Halt is reached, we have r3 = 2n, and all other counters set to 0.

Exercise 8.1 For every of the following conditions, describe some counters
machine that reaches instruction Halt if and only if the following condition
is true on the initial condition:

1. r1 ≥ r2 ≥ 1;

2. r1 = r2 or r1 = r3;

3. r1 = r2 or r1 = r3 or r2 = r3.

Theorem 8.3 Every machine with k-stacks can be simulated by a machine with
k +1 counters.

Proof: The idea is to see a stack w = a1a2 · · ·an on an alphabet Σ of size r − 1
as an integer i in basis (radix) r : Without loss of generality, we can consider Σ to
be Σ = {0,1, · · · ,r − 1}. The word w can be interpreted as the integer i = anr n−1 +
an−1r n−2 +·· ·a2r +a1.

One uses a counter i for every stack. A k+1th counter, that we will call additional
counter, is used to adjust the value of the counters and simulate every operation
(push, pop, reading the top) of one of the stacks.

Popping is replacing i by i div r , where div denotes integer division: Starting
with the additional counter set to 0, one iteratively in a loop decrements the counter
i by r (in r steps) and increments the additional counter by 1. This operation is re-
peated until counter i reaches value 0. One then copies the additional counter to
counter i : one iteratively decrements the additional counter by 1 while increment-
ing counter i by 1 until the additional counter reaches 0. At this moment, counter i
contains the correct result.

Pushing symbol a is replacing i by i ∗r +a: First, one multiplies the counter i by
r : Starting with the additional counter set to 0, one decrements the counter i by 1
and one increments the additional counter by r (in r steps) until counter i reaches
0. One then decrements the additional counter by 1 while incrementing counter i
until the former reaches 0. At this moment, one reads counter i contains i ∗ r . One
then increments counter i by a (using a incrementation operations).

Reading the top of stack i is computing i mod r , where i mod r denotes the re-
mainder of the Euclidean division of i by r : We start by moving the content of i to the
additional counter as follows. Starting with additional counter set to 0, one decre-
ments counter i by 1 and one increments the additional counter by 1. When counter
i reaches 0 one stops. One then decrements the additional counter by 1 while incre-
menting counter i until the former reaches 0. While doing this, one memorizes in
parallel the number of operations incrementations to counter i performed modulo
r in the internal state. When the loop is done, the internal state thus contains i
modulo r . □
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Theorem 8.4 Every machine with k ≥ 3 counters can be simulated by a machine
with 2 counters.

Proof: Suppose first that k = 3.
The idea is to encode the three counters i , j and k by integer m = 2i 3 j 5k . One

of the counters stores this integer. The other counter is used to do multiplications,
divisions, and compute remainders modulo 2, 3, and 5.

To increment i , j or k by 1, it is sufficient to multiply m by 2, 3 or 5 by using the
techniques of the previous proof.

To test whether i , j or k = 0, it is sufficient to test whether m is divisible by 2, 3
or 5, by using the techniques of the previous proof.

To decrement i , j or k of 1, it is sufficient to divide m by 2, 3 or 5 using the
techniques of the previous proof.

For k > 3, we use the same approach, but with the first k prime numbers instead
of simply 2, 3, and 5. □

Exercise 8.2 Reconsider the previous exercise but by using systematically at
most 2 counters.

By combining the previous results, we obtain:

Corollary 8.1 Every Turing machine can be simulated by a 2 counters machine.

Remark 8.4 Observe that the simulation is particularly inefficient: The simula-
tion of a time t of the Turing machine requires an exponential time by a 2 counter
machine.

8.3 Church-Turing thesis

8.3.1 Equivalence of all considered models

In this chapter, we have introduced various models, and we have shown that they
can all be simulated by Turing machines, or simulate Turing machines.

Actually, all these models are equivalent in terms of what they are able to com-
pute: We already proved that Turing machines can simulate RAMs. We could also
easily prove the contrary: One can simulate a Turing machine using a RAM.

We have also shown that the counter machines and the stack machines with 2 or
more stacks can simulate Turing machines. It is easy to see that the contrary holds:
One can simulate the evolution of a stack machine or of counter machine by a Turing
machine.

Consequently, all these models are equivalent at the level of what they can com-
pute.
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8.3.2 Church-Turing thesis

The equivalences we observed before and many others led to the Church-Turing
thesis, expressed historically by Alonzo Church, Alan Turing and later also formal-
ized by Stephen Kleene. This thesis states that “what is effectively calculable is com-
putable by a Turing machine”.

In this formulation, the first notion of “calculable” makes reference to a intu-
itively given notion, while the second notion of “computable” means “computable
by a Turing machine”, i.e., a formal notion.

Since it is not possible to formally capture the first notion, this is a thesis in the
philosophical sense of this term: It is not possible to prove it.

However, given two (sufficiently expressive) models, we can mathematically prove,
as we did, that everything that can be computed by the first can be simulated, and
hence computed, by the second (and conversely). This gives evidence that the no-
tion of “computable” as defined with Turing machines is matching the intuitive no-
tion of “computable” (or calculable).

While it cannot be proved, the Church-Turing thesis is widely assumed to be
true.

8.4 Bibliographic notes

Suggested readings To go further with all the mentioned notions in this chapter,
we suggest to read [Sipser, 1997],[Hopcroft & Ullman, 2000].

Other formalisms equivalent to Turing machines exist, in particular the notion
of recursive functions that is presented for example in [Dowek, 2008], [Stern, 1994]
or in [Cori & Lascar, 1993b].

Bibliography (S)RAM is inspired by [Papadimitriou, 1994] and [Jones, 1997].
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Chapter 9

Computability

This chapter presents some main results of computability theory. In other words,
this chapter is devoted to understanding the power of (modern today’s) computers.
We will prove that some problems cannot be solved using a computer: The objective
is to explore the limits of computer programming.

Remark 9.1 In practice, one could say that in computer science, one aims to
solve problems by implementing algorithms as programs and that discussing the
problems that cannot be solved by programs has only little interest. But, actually,
it is very important to understand that we will not focus on problems for which
no solution is known, but on something much stronger: We will focus on prob-
lems for which it is (provably) impossible to produce any algorithmic solution.

Why focusing on understanding the problems that cannot be solved? First be-
cause understanding that a problem cannot be solved is useful: This means in par-
ticular that the problem must be simplified or modified in order to be solved. Sec-
ond, because all these results are culturally very interesting and provide a perspec-
tive on programming, and on limits of computational devices, or of the automation
of some tasks, such as the verification of programs.

9.1 Universal machines

9.1.1 Interpreters

A certain number of these results is the consequence of a simple fact, that has many
consequences: One can program interpreters, that is to say programs that takes as
input the description of some other program and that then simulate this program.

Example 9.1 A language such as Java or Python isa interprete d: A Java program
for example is compiled into some encoding that is called a bytecode. When one
wants to start this program, the Java interpreter simulates this bytecode on the

129
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machine on which it is executed. This principle of interpretation allows a Java
program to work on numerous platforms and directly on various machines: Only
the interpreters depends on the machine on which the program is executed. This
portability is partly what historically led to the success of the Java language (and
remains true for interpreted languages such as Python).

aThe discussion here is true for early versions of Java. Now, just-in-time compilation is often
used, and this discussion is only partially true.

The possibility of programming interpreters is thus practically extremely posi-
tive.

However, it also leads to mathematical proofs of numerous negative results or to
paradoxical results about the impossibility of solving certain problems with a com-
puter, even for very simple problems, as we will see shortly.

Programming an interpreter is possible in all usual programming languages, in
particular it can be programmed using Turing machines.

Remark 9.2 We will not talk about Java or Python in what follows, but about
programs for Turing machines. Reasoning on Java (or any other language) would
only complicate the discussion without changing the heart of the arguments.

Let us start by getting convinced that one can construct an interpreter for Turing
machines. In that context, an interpreter is called a universal!Turing machine.

9.1.2 Encoding Turing machines

We first need to fix a representation of programs of Turing machines. Here is a way
to do so.

Remark 9.3 The following encoding is only a convention. Any other encoding
that would guarantee the possibility of decoding (for example in the spirit of
Lemma 9.1) would work and would be a valid alternative.

Definition 9.1 (Encoding of a Turing machine) Let M be a Turing machine on
alphabet Σ= {0,1}.

According to Definition 7.1, M is given by a 8-tuple

M = (Q,Σ,Γ,B,δ, q0, qa , qr ) :

• Q is a finite set, whose elements are Q = {q0, q1, · · · , qr−1}, with the conven-
tion that q0 is the initial state, and that q1 = qa , q2 = qr ;

• Γ is a finite set, whose elements are Γ = {X1, X2, · · · , Xs }, with the conven-
tion that Xs is the blank B symbol, and that X1 is the symbol 0 of Σ, and
that X2 is the symbol 1 of Σ.

For m ∈ {←, |,→}, define 〈m〉 as follows: 〈←〉= 1, 〈|〉 = 2, 〈→〉= 3.
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We can encode the transition function δ as follows: Suppose that the transi-
tion rule isδ(qi , X j ) = (qk , Xl ,m): The encoding of this rule is the word 0i 10 j 10k 10l 10〈m〉
on alphabet {0,1}. Observe that for any non-null integers i , j ,k, l , there is no con-
secutive 1 in this word.

An encoding, denoted 〈M〉, of Turing machine M is a word on alphabet {0,1}
of the form

C111C211C3 · · ·Cn−111Cn ,

where each Ci is the encoding of one of the transition rules of δ.

Remark 9.4 To a given Turing machine M one can associate several encodings 〈M〉:
In particular, one can permute the (Ci )i , or the states, etc.

The only interest of this particular encoding is that it can be easily decoded: One
can easily find all the ingredients of the description of a Turing machine from the
encoding of the machine.

For example, if one wants to determine the movement m for a given transition:

Lemma 9.1 (Decoding the encoding) One can construct a Turing machine M
with four tapes, such that if the encoding 〈M ′〉 of a machine M ′ is put on its first
tape, 0i is put on its second tape, and 0 j is put on its third tape, M produces on its
fourth tape the encoding 〈m〉 of the movement m ∈ {←, |,→} such that δ(qi , X j ) =
(qk , Xl ,m) where δ is the transition function of the machine M ′.

Sketch of proof: Construct a machine that scans the encoding of M ′ until it finds
the encoding of the associated transition, and that then reads in this encoding of this
transition the desired value of m. □

We will need to encode pairs made of the encoding of a Turing machine M and
of a word w on the alphabet {0,1}. One way to do this is to define the encoding of
this pair, denoted 〈〈M〉, w〉 , by

〈〈M〉, w〉 = 〈M〉111w,

that is to say the word obtained by concatenating the encoding of the Turing ma-
chine M , three times the symbol 1, and then the word w . Since our encoding of
Turing machines never produces three consecutive 1’s, the idea is that one can find
in the word 〈M〉111w the part which is 〈M〉 and the part which is w : In short: this
encoding guarantees that one can decode unambiguously 〈M〉 and w from 〈〈M〉, w〉.

9.1.3 Encoding pairs, triplets, etc. . .

We have just fixed an encoding that works for a Turing machine and a word. We now
more generally fix a way to encode two words w1 and w2 into a unique word w . In
other words, we give a way to encode an (ordered) pair of words, i.e., an element of
Σ∗×Σ∗, by a unique element (i.e. word) of Σ∗, that we will denote 〈w1, w2〉.

How to do this?



132 CHAPTER 9. COMPUTABILITY

A first idea is to encode two words of Σ using a bigger alphabet, in such a way
that it is possible to reconstruct the initial words.

For example, one could encode the words w1 ∈ Σ∗ and w2 ∈ Σ∗ by the word
w1#w2 on alphabet Σ∪ {#}. A Turing machine can then easily determine both w1

and w2 from the word w1#w2.
One can also re-encode the obtained word one letter after the other to obtain a

way to encode two words on Σ = {0,1} by a unique word on Σ = {0,1}: For example,
if w1#w2 is written a1a2 · · ·an on alphabet Σ∪ {#}, we define 〈w1, w2〉 as the word
e(a1)e(a2) . . .e(an) where e(0) = 00, e(1) = 01 and e(#) = 10. This encoding is still
decodable: From 〈w1, w2〉, a Turing machine can decode w1 and w2.

From now, we will denote by 〈w1, w2〉 the encoding of the pair consisting of the
word w1 and of the word w2.

Observe that the coming results do not depend on the concrete encoding used
for pairs: One can hence encode a pair made of a Turing machine and of a word as
in previous section, or consider it as 〈〈M〉, w〉, that is to say the encoding of a pair
made of the encoding of the machine and of the word, indifferently.

9.1.4 Existence of a universal Turing machine

After these preliminary discussions, we now show that one can construct an inter-
preter, that is to say what is called a universal!Turing machine in the context of Tur-
ing machines.

Its existence is given by the following theorem:

Theorem 9.1 (Existence of a universal Turing machine) There exists a Turing
machine Muni v such that, on input 〈〈A〉, w〉 where

1. 〈A〉 is the encoding of a Turing machine A;

2. w ∈ {0,1}∗;

Muni v simulates the Turing machine A on input w.

Proof: One can easily see that there exists a Turing machine Muni v with three
tapes such that if one puts:

• the encoding 〈A〉 of a Turing machine A on the first tape;

• a word w on alphabet Σ= {0,1} on the second;

then Muni v simulates the Turing machine A on input w by using its third tape.
Indeed, the machine Muni v simulates transition after transition the machine A

on input w on its second tape: Muni v uses the third tape to store 0q where q is
encoding the state of the Turing machine A at the transition that one is currently
simulating: Initially, this tape contains 0, the encoding of q0.

To simulate each transition of A, Muni v reads the letter X j in front of its head on
the second tape, then reads in the encoding 〈A〉 on the first tape the value of qk , Xl

and m, for the transition δ(qi , X j ) = (qk , Xl ,m) of A, where 0i is the content of the
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third tape. Then Muni v writes then Xl on its second tape, writes qk on its third tape,
and moves the head of the second tape according to the movement m.

To prove the result, it is then sufficient to use a Turing machine with only one
tape that simulates the previous machine with three tapes, by first decoding 〈A〉 and
w from the input. □

9.1.5 First consequences

Here is a first consequence of the existence of interpreters: The proof of Proposi-
tion 7.3, that is to say the proof that a non-deterministic Turing machine M can be
simulated by a deterministic Turing machine.

Proof:[Of Propositon 7.3] The transition relation of the non-deterministic ma-
chine M is necessarily of bounded degree of non-determinism: That is to say, the
number

r = maxq∈Q,a∈Γ|{((q, a), (q ′, a′,m)) ∈ δ}|
is finite (|.| denotes the size).

Suppose that for each pair (q, a), we number the choices among the transition
relation of the non-deterministic machine M from 1 to (at most) r . At this moment,
to describe the non-deterministic choices done by the machine up to time t , it is
sufficient to give a sequence of t numbers between 1 and (at most) r .

We construct a (deterministic) Turing machine that simulates the machine M
in the following way: For t = 1,2, · · · , it enumerates all the sequences of length t of
integers between 1 and r . For each of these sequences, it simulates t steps of the ma-
chine M by making the choices given by the sequence. Doing this for all sequences
simulates all potential non-deterministic choices of M . The machine stops and ac-
cepts as soon as it finds some t and a sequence such that M reaches an accepting
configuration. □

9.2 Languages and decidable problems

Having established the existence of a universal Turing machines (interpreter), we
will present a few additional definitions in this section.

In the rest of this chapter, we will only focus on problems whose answer is either
true or false, which will allow us to simplify the discussion, see Figure 9.1.

9.2.1 Decision problems

Definition 9.2 A decision problem is given by a set E, called the set of instances,
and by a subset E+ ⊆ E, called the set of the positive instances.

The question on which we will focus is development of an algorithm (when this
is possible) that decides whether a given instance is positive or not, i.e. belongs to
E+. We will formulate the decision problems systematically in the following form:
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T RU E

F ALSE

Figure 9.1: Decision problems: In a decision problem, we have a property that is
either true or false for each instance. The objective is to distinguish the positive in-
stances E+ (were the answer is true) from negative instances E\E+ (where the prop-
erty is false).

Definition 9.3 (N ame o f the pr obl em)

Input: An instance (that is to say an element of E).

Answer: Decide if a given property holds (that is to say if this element belongs to
E+).

For example, we can consider the following problems:

Definition 9.4 (PRIME NUMBER)

Input: An integer n.

Answer: Decide if n is prime.

Definition 9.5 (ENCODING)

Input: A word w.

Answer: Decide if w is the encoding 〈M〉 of some Turing machine M.

Definition 9.6 (REACH)

Input: A triple consisting of a graph G, a vertex u and a vertex v of the graph.

Answer: Decide whether there exists a path between u and v in G.

9.2.2 Problems versus Languages

We interchangably use the terminology problem or language in the upcoming dis-
cussions and chapters.
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Remark 9.5 (Problems vs Languages) This is due to the following considera-
tions: To a decision problem we can associate a language and conversely.

Indeed, to a decision problem we generally implicitly associate an encoding
function (for example for graphs, a way to encode the graphs) that allows encod-
ing the instances, that is to say the elements of E, by a given word on a certain
alphabetΣ. One can then see E as a subset ofΣ∗, whereΣ is this alphabet: With a
decision problem P , we associate the language L(P ) defined as the set of words
which encode instances of E which belong to E+:

L(P ) = {w | w ∈ E+}.

Conversely, we can see any language L as a decision problem, by formulating
it as follows:

Definition 9.7 (Pr oblem associ ated to the l ang uag e L)

Input: A word w.

Answer: Decide if w ∈ L.

9.2.3 Decidable languages

We recall the notion of decidable language.

Definition 9.8 (Decidable language) A language L ⊂Σ∗ is said to be decidable
if it is decided by some Turing machine.

A language or a problem that is decidable is also said to be recursive. A language
that is not decidable is said to be undecidable.

We write D for the class of languages or of problems that are decidable.
For example:

Proposition 9.1 The decision problems PRIME NUMBER, ENCODING and REACH
are decidable.

The proofs consists in constructing a Turing machine that decides if its input
is a prime number (respectively: the encoding of a Turing machine, or a positive
instance of REACH). We leave this as an exercise in elementary programming to our
readers.
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Exercise 9.1 (solution on page 234) Let A be the language consisting of the
only string s where

s =
{

0 if God does not exist
1 if God exists

Is A decidable? Why? (Hint: The answer does not depend on the religious
convictions the reader).

9.3 Undecidability

In this section, we will prove one of the philosophically most important result in the
theory of programming: The existence of problems that cannot be decided, i.e. that
are undecidable.

9.3.1 First considerations

Observe first that this can be established easily.

Theorem 9.2 There exist decision problems which are not decidable.

Proof: We have seen that one can encode a Turing machine by a finite word on
alphabet Σ= {0,1}, see Definition 9.1. There is consequently a countable number of
Turing machines.

By contrast, there is an uncountable number of languages over the alphabet
Σ= {0,1}: Indeed, we saw in Chapter 1 that the power set of N is uncountable, using
Cantor diagonalization argument. Now, this must also be the case for the set of lan-
guages, as there is an easy bijection this latter set and power set of N: just take the
characteristic functions of the languages.

There are consequently more problems than those that can be solved by any
Turing machine. There must thus be decision problems that are not solved by any
Turing machine (and there is even an uncountable number of such problems). □

In general, a proof as the one above does not say anything about examples of
undecidable problems. Are they esoteric? Are they only of interest for theoreticians?

Unfortunately, this is not the case as even some simple and natural problems
turn out not be solvable by any algorithm.

9.3.2 Is this problematic?

For example, in one important undecidable problem, we are given a program and
a specification of what this program is supposed to do (for example sorting some
numbers) and one wants to check if the program matches its specification (i.e. is a
correct sorting algorithm).
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We could hope that this process of verification could be automatized, that is to
say that we could design an algorithm that would test if a given program satisfies its
specification. Unfortunately, this is impossible: The general problem of verification
is undecidable, and can thus not be solved on a computer.

We will meet some other undecidable problems in this chapter. Our objective
will be to make our reader feel what types of problems are undecidable, and to un-
derstand the techniques that permit to prove that a given problem cannot be solved
algorithmically, i.e. cannot be solved by a computer.

9.3.3 A first undecidable problem

We will use a diagonalisation argument that is to say an argument close to Cantor’s
diagonalisation. Recall that Cantor’s diagonalisation is used to prove that the set of
subsets ofN is uncountable, see the first chapter.

Remark 9.6 Behind the previous argument on the fact that there is an uncount-
able number of languages on the alphabet Σ= {0,1} is already a diagonalization
argument. Here, we will do a more explicit, and more constructive diagonaliza-
tion.

We call the following decision problem universal!language.

Definition 9.9 (Luniv)

Input: The encoding 〈M〉 of a Turing machine M and a word w.

Answer: Decide if the machine M accepts the word w.

Remark 9.7 One can also see this problem in the following way: We are given a
pair 〈〈M〉, w〉, where 〈M〉 is the encoding of a Turing machine M, and w a word,
and one wants to decide if the machine M accepts the word w.

Theorem 9.3 The problem Luniv is not decidable.

Proof: We prove the result by contradiction. Suppose that Luniv is decided by
some Turing machine A.

We are then able to construct a machine B working as follows:

• B takes as input a word 〈C〉 representing the encoding of a Turing machine C ;

• B calls the Turing machine A on the pair 〈〈C〉,〈C〉〉 (that is to say on the input
consisting of the encoding of the Turing machine C and the word w equal to
this encoding);

• If the Turing machine A:
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– accepts this word, B rejects;

– rejects this word, B accepts.

By construction, and from our hypothesis, B halts on every input.
We prove now that there is a contradiction, by applying the Turing machine B on

the word 〈B〉, that is on the word encoding the Turing machine B .

• If B accepts 〈B〉, then if follows by definition of Luniv and of A, that A accepts
〈〈B〉,〈B〉〉. But if A accepts this word, B is constructed such that it rejects the
input 〈B〉. Contradiction.

• If B rejects 〈B〉, then it follows by definition of Luniv and of A, that A rejects
〈〈B〉,〈B〉〉. But if A rejects this word, B accept the input 〈B〉 by construction.
Contradiction.

□

9.3.4 Semi-decidable problems

While the problem Luniv is undecidable, it is semi-decidable in the following sense:

Definition 9.10 (Semi-decidable language) A language L ⊂ M∗ is said to be
semi-decidable if it is the set of words accepted by some Turing machine M.

Corollary 9.1 The universal language Luniv is semi-decidable.

Proof: To know if one must accept some input that is the encoding 〈M〉 of a Tur-
ing machine M and of a word w , it is sufficient to simulate the Turing machine M on
input w . One stops the simulation and one accepts if one detects in this simulation
that the Turing machine M reaches some accepting state. Otherwise, one simulates
M for ever. □

A language semi-decidable is also called computably enumerable (sometimes also
called recursively enumerable).

We write CE for the class of languages and decision problems semi-decidable:
See Figure 9.2.

Corollary 9.2 D⊊CE.

Proof: The inclusion follows directly from the definitions. Since Luniv is in CE and is
not in D, the inclusion is strict. □

9.3.5 A problem that is not semi-decidable

Let us start by establish the following fundamental result:
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decidable languages

semi-decidable languages

all languages

Figure 9.2: Inclusions between classes of languages.
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M2
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Reject

Figure 9.3: Illustration of the proof of Theorem 9.4.
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w M
Accept
Reject Accept

Reject

Figure 9.4: Construction of a Turing machine that accepts the complement of a de-
cidable language.

Theorem 9.4 A language is decidable if and only it it is semi-decidable and its
complement is also semi-decidable.

Remark 9.8 Theorem 9.4 explains the terminology semi-decidable: A language
that is semi-decidable and whose complement as well, is decidable. So when a
language is semi-decidable, one half of the requirements to be decidable is in a
sense satisfied.

Proof: Direction ⇐. Suppose that L is semi-decidable as well as its complement.
There exists a Turing machine M1 which halts and accepts words of L, and a Turing
machine M2 which halts and accepts words of its complement. We construct a Tur-
ing machine M that, on a given input w , simulates in parallel1 M1 and M2, (that is
to say it simulates t steps of M1 on w , and then t steps of M2 on w , for t = 1,2, · · · ,)
until one of the two machines halts. See Figure 9.3. If M1 halts and accepts, the Tur-
ing machine M accepts. If M2 does so, the machine M rejects. Obviously, the Turing
machine that we just described decides L.

Direction⇒. By definition, a decidable language is semi-decidable. By exachang-
ing the accepting state and the rejecting state in the Turing machine, its complement
is also decidable (See Figure 9.4) and hence is also semi-decidable. □

We now consider then the complement of the problem Luniv, that we will denote
Luniv.

Remark 9.9 In other words, by definition, a word w is in Luniv if and only w is
not in Luniv, that is to say

• not of the form 〈〈M〉, w〉, for some Turing machine M,

• or of the form 〈〈M〉, w〉 but with Turing machine M that does not accept
input w.

Corollary 9.3 The problem Luniv is not semi-decidable.

Proof: Otherwise, by the Theorem 9.4, its complement, the problem Luniv, would
be decidable. □

1One alternative is to consider that M is a non-deterministic Turing machine that simulates in a non-
deterministic way either M1 or M2.



9.3. UNDECIDABILITY 141

9.3.6 On the terminology

A decidable language is also called a recursive language: The terminology is a refer-
ence to the notion of recursive functions, see for example the course [Dowek, 2008]
which present computability through recursive functions, or Section 9.7.2.

The notion of enumerable in computably enumerable is explained by the follow-
ing result.

Theorem 9.5 A language L ⊂ M∗ is computably enumerable if and only if one
can construct some Turing machine that outputs one after the other all the words
of language L.

Proof: Direction ⇒. Suppose that L is computably enumerable. There exists
some Turing machine A which halts and which accepts the words of L.

The set of pairs (t , w), where t is some integer, and where w is a word is count-
able. One can even get convinced easily that is effectively countable: One can con-
struct some Turing machine that produces the encoding 〈t , w〉 of all the pairs (t , w).
For example, one considers a loop that for t = 1,2, · · · for ever, considers all the words
w of length or equal to t , and produces for each pair the word 〈t , w〉.

Consider a Turing machine B that for each produced pair (t , w), simulates t steps
of the machine A. If the machine halts and accepts in exactly t steps, B outputs the
word w . Otherwise B does not print anything for this pair.

A word of language L, is accepted by A at some particular time t . It will then be
printed by B when it considers the pair (t , w). By assumption, any word w produced
by B is accepted by A, and hence is a word of L.

Direction ⇐. If there is a Turing machine B which enumerates all the words of
the language L, then one can construct a Turing machine A, which, given some word
w , simulates B , and every time that B produces a word, compares this word to the
word w . If there are equal, then A stops and accepts. Otherwise, A continues.

By construction, on some input w , A halts and accepts if w is among the words
enumerated by B , that is to say if w ∈ L. If w is not among these words, by hypothe-
sis, w ̸∈ L, and hence by construction, A will not accept w . □

9.3.7 Closure properties

Theorem 9.6 The set of semi-decidable languages is closed by union and by in-
tersection: In other words, if L1 and L2 are semi-decidable, then L1 ∪ L2 and
L1 ∩L2 are.

Proof: Suppose that L1 is L(A1) for some Turing machine A1 and L2 is L(A2)
for some Turing machine A2. Then L1 ∪L2 is L(A) for the Turing machine A which
simulates in parallel A1 and A2 and which halts and accepts as soon as one of the
Turing machine A1 or A2 halts and accepts: See Figure 9.5.

L1 ∩L2 is L(A) for the Turing machine A which simulates in parallel A1 and A2

and which halts and accepts as soon as both Turing machines A1 and A2 halt and
accept.

□
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w

A1
Accept

A2
Accept

Accept

Accept

Figure 9.5: Construction of a Turing machine accepting L1 ∪L2.

Theorem 9.7 The set of decidable languages is closed by union, intersection and
complement: In other words, if L1 and L2 are decidable, then L1∪L2, L1∩L2, and
Lc

1 are.

Proof: We have already used the closure by complement. Indeed, by exchanging
the accepting state and the rejecting state of the Turing machine, the complement
of a decidable set is also decidable: See Figure 9.4.

It remains to prove that with the hypotheses, the languages L1 ∪L2 and L1 ∩L2

are decidable. But this is clear from the previous theorem and the fact that a set
is decidable if and only if it is semi-decidable as well as its complement, by using
Morgan’s law (the complement of a union is the intersection of the complement, and
symmetrically) and the fact that complements of decidable languages are decidable.
□

In particular, we deduce:

Definition 9.11 (Luniv
′
)

Input: The encoding 〈M〉 of a Turing machine M and a word w.

Answer: Decide if the machine M does not accept the word w.

Corollary 9.4 The problem Luniv
′

is undecidable.

Proof: Luniv is the union of Luniv
′

and of the complement of ENCODING. If Luniv
′

were decidable, then Luniv would be decidable. □

9.4 Other undecidable problems

Having shown a first result to be undecidable, we will now obtain other undecidable
languages.
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Instance of

problem A
f Instance of

problem B
Algorithm yes

no

Figure 9.6: Reduction of problem A to problem B . If one can solve the problem B ,
then one can solve the problem A. The problem A is consequently at least as easy as
problem B , denoted by A ≤m B .

T RU E
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T RU E

F ALSE

Problem A Problem B

Figure 9.7: A reduction transforms the positive instances to positive instance,s and
negative instances to negative instances.

9.4.1 Reductions

We know two undecidable problems, Luniv and its complement. Our aim is now to
obtain some more. We will also show how to compare problems. To this end, we will
introduce the notion of reduction.

First, we generalize the notion of computable from languages and decision prob-
lems to functions.

Definition 9.12 (Computable function) Let Σ and Σ′ be two alphabets. A (to-
tal) function f :Σ∗ →Σ′∗ is computable if there exists a Turing machine A work-
ing on alphabetΣ∪Σ′, such that for all words w, A on input w, halts and accepts,
with f (w) written on its tape at the moment it halts.

One can see that the composition of two computable functions is computable.
This provides a way to introduce a notion of reduction between problems: The

idea is that if A reduces to B , then problem A is as least as easy as problem B , or,
if one prefers, the problem B is at least as hard than problem A. See Figure 9.6 and
Figure 9.7.
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Definition 9.13 (Reduction) Let A and B two problems of respective alphabet
ΣA and ΣB . A reduction from A to B is a computable function f :Σ∗

A →Σ∗
B such

that w ∈ A if and only if f (w) ∈ B. We write A≤mB when A reduces to B, i.e.,
there is a reduction from A to B.

Reductions, as defined above, behave as we would like: A problem is at least as
easy (and hard) as itself, and the relation “is at least as easy as” is transitive. In other
words:

Theorem 9.8 ≤m is a preorder:

1. L≤mL;

2. L1 ≤m L2, L2 ≤m L3 implies L1 ≤m L3.

Proof: Consider the identity function as function f for the first point.
For the second, suppose that L1 ≤m L2 via the reduction f , and that L2 ≤m L3 via

the reduction g . We have x ∈ L1 if and only if g ( f (x)) ∈ L2. It is then sufficient to see
that g ◦ f , being the composition of two computable functions is computable. □

Remark 9.10 The reduction relation ≤m is not an order, since L1 ≤m L2, L2 ≤m

L1 does not imply L1 = L2. It is actually rather natural to introduce the following
concept: Two problems L1 and L2 are equivalent, denoted L1≡L2, if L1 ≤m L2

and L2 ≤m L1.

Intuitively, if a problem is at least as easy as a decidable problem, then it is de-
cidable. We show this here formally:

Proposition 9.2 (Reduction) If A ≤m B, and if B is decidable then A is decidable
.

Proof: A is decided by the Turing machine that, on a given input w , computes
f (w), and then simulate the Turing machine that decides B on input f (w). Since we
have w ∈ A if and only if f (w) ∈ B , the Turing machine behaves correctly. □

Proposition 9.3 (Reduction) If A ≤m B, and if A is undecidable, then B is un-
decidable.

Proof: This is the contrapositive of the previous proposition. □

9.4.2 Some other undecidable problems

Proposition 9.3 provides a way to obtain the undecidability proof for many other
problems.

As a first example, it is not possible to determine algorithmically if a given Turing
machine halts.
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Figure 9.8: Illustration of the Turing machine used in the proof of Proposition 9.4.

Definition 9.14 (H al ti ng Pr oblem)

Input: The encoding 〈M〉 of a Turing machine M and some input w.

Answer: Decide if M halts on input w.

Proposition 9.4 The problem H al ti ng Pr obl em is undecidable.

Proof: We construct a reduction from Luniv to the halting problem: For every pair
〈〈A〉, w〉, we consider the Turing machine B defined in the following way (see Figure
9.8):

• B takes as input a word w ;

• B simulates A on w ;

• If A accepts w , then B accepts. If A rejects w , then B loops (possibly B simu-
lates A forever, if A never halts).

The function f that maps 〈〈A〉, w〉 to 〈〈B〉, w〉 is computable. Furthermore, we
have 〈〈A〉, w〉 ∈ Luniv if and only if B halts on input w , that is to say 〈〈B〉, w〉 ∈ H al ti ng Pr obl em.
□

As another example, it is not possible to decide algorithmically (that is to say by
a Turing machine, i.e. a program) if a Turing machine accepts at least one input:

Definition 9.15 (L;)

Input: The encoding 〈M〉 of a Turing machine M.

Answer: Decide if L(M) ̸= ;.

Proposition 9.5 The problem L; is undecidable.

Proof: We design a reduction from Luniv to L;: For any pair 〈〈A〉, w〉, we consider
the Turing machine Aw defined as follows (see Figure 9.9):

• Aw takes as input a word u;
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w A
Accept Accept

u

Aw

Figure 9.9: Illustration of the Turing machine used in the proof of Proposition 9.5.

• Aw simulates A on w ;

• If A accepts w , then Aw accepts.

The function f that maps 〈〈A〉, w〉 to 〈Aw 〉 is indeed computable. Furthermore, we
have 〈〈A〉, w〉 ∈ Luniv if and only if L(Aw ) ̸= ;, that is to say 〈Aw 〉 ∈ L;: Indeed, Aw

accepts either all the words (and hence the associated language is not empty) if
A accepts w , or accepts no word otherwise (and hence the associated language is
empty). □

Definition 9.16 (L ̸=)

Input: The encoding 〈A〉 of a Turing machine A and the encoding of 〈A′〉 of a
Turing machine A′.

Answer: Determine if L(A) ̸= L(A′).

Proposition 9.6 The problem L ̸= is undecidable.

Proof:
We design a reduction from L; to L ̸=. We consider a Turing machine B that ac-

cepts the empty language: Take for example a Turing machine B that enters imme-
diately in a non-terminating loop. The function f that maps 〈A〉 to the pair 〈A,B〉
is indeed computable. Furthermore, we have 〈A〉 ∈ L; if and only if L(A) ̸= ; if and
only if 〈A,B〉 ∈ L ̸=. □

9.4.3 Rice’s theorem

The two previous results can be seen as the consequence of a very general statement
that asserts that any non-trivial property of algorithms is undecidable.

A property of semi-decidable languages is said to be non-trivial if it is not always
true or always false for Turing machines: That is to say, there is at least a Turing
machine M1 such that L(M1) satisfies P and a Turing machine M2 such that L(M2)
does not satisfy P .
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Figure 9.10: Illustration of the Turing machine used in the proof of Rice Theorem.

Theorem 9.9 (Rice’s theorem) Any non-trivial property of semi-decidable lan-
guages is undecidable.

Then the following decision problem LP :

Input: The encoding 〈M〉 of a Turing machine M;

Answer: Decide if L(M) satisfies property P;

is undecidable.

Remark 9.11 Observe that if a property P is trivial in the above sense, LP is triv-
ially decidable: Construct a Turing machine that does not even read its input
and accepts (respectively: rejects).

Proof: We need to prove that the decision problem LP is undecidable.
Replacing P by its negation if needed, one can assume that the empty word does

not satisfy the property P (proving the undecidability of Lp is equivalent to proving
the undecidability of its complement). Since P is non-trivial, there exists at least one
Turing machine B whose accepted language L(B) satisfies P .

We design a reduction from Luniv to the language LP . Given a pair 〈〈A〉, w〉, we
consider a Turing machine Aw defined as follows (see Figure 9.10):

• Aw takes as input a word u;

• On word u, Aw simulates A on word w ;

• If A accepts w , then Aw simulates B on the word u: Aw accepts if and only if
B accepts u.

In other words, Aw accepts, if and only if A accepts w and if B accepts u. If w is
accepted by A, then L(Aw ) equals L(B), and hence satisfies property P . If w is not
accepted by A, then L(Aw ) =;, and hence does not satisfy property P .

The function f that maps 〈〈A〉, w〉 to 〈Aw 〉 is obviously computable. □
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Exercise 9.2 (solution on page 235) Prove that the set of encodings of Tur-
ing machines which accepts all the words which are palindromes (possibly
accepting other words) is undecidable.

9.4.4 The drama of verification

From Rice’s theorem, we directly get the following:

Corollary 9.5 It is not possible to design an algorithm that takes as input a pro-
gram, its specification, and that determines if the program satisfies the specifica-
tion.

The above is true, even if the specification is fixed to a property P (as soon as the
property P is not trivial) by Rice’s theorem.

From what we have seen before, this turns out to be true even for very rudimen-
tary systems. For example:

Corollary 9.6 It is not possible to design an algorithm that takes as input the de-
scription of a system, its specification, and that determines if the system satisfies
its specification.

The above is true, even if the specification is fixed to a property P (as soon as the
property P is not trivial), and even for systems as simple as two counter machines
by Rice’s theorem, and the simulation results of the previous chapter.

9.4.5 Notion of completeness

We now introduce a notion of completeness.

Definition 9.17 (CE-completeness) A problem A is called CE-complete, if:

1. it is computably enumerable;

2. for every other computably enumerable problem B we have B ≤m A.

In other words, a CE-complete problem is maximal for ≤m among the problems
of class CE.

Theorem 9.10 The problem Luniv is CE-complete.

Proof: Luniv is semi-decidable. Now, let L be a semi-decidable language. By def-
inition, there exists a Turing machine A which recognizes L. Consider the function
f which maps w to the word 〈〈A〉, w〉. We have that w ∈ L if and only if f (w) ∈ Luniv,
and hence we obtain L ≤m Luniv. □
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9.5 Natural undecidable problems

One can object that the previous problems, relative to algorithms are “artificial” in
the sense that they are talking about properties of algorithms, the algorithms have
been in turn defined by the theory of computability.

It is difficult to define formally what one would like to call a “natural problem”,
but one can say that a problem that has been discussed before the invention of com-
putability theory is (more) natural.

9.5.1 Hilbert’s tenth problem

This is clearly the case of Hilbert’s tenth problem, identified by David Hilbert as one
of the most interesting problems for the 20th century in 1900: Can we determine if a
given polynomial equation with integer coefficients has an integer solution?

Definition 9.18 (Hi l ber t ′s 10th pr oblem)

Input: A polynomial P ∈N[X1, · · · , Xn] with integer coefficients.

Answer: Decide if P has an integer root

Theorem 9.11 The problem Hi l ber t ′s 10th pr obl em is undecidable.

The proof of this result, due to Matiyasevich [Matiyasevich, 1970] (extending
statements from Davis, Putnam and Robinson) is beyond the ambition of this doc-
ument.

9.5.2 The Post correspondence problem

The proof of the undecidability of Post correspondence problem is easier, even if
we will not give it here. One can consider this problem as a natural problem, in
the sense that it is not making a (direct) reference to the notion of algorithms, or to
Turing machines.

Definition 9.19 (Post correspondence problem)

Input: A sequence (u1, v1), · · · , (un , vn) of pairs of words on alphabet Σ.

Answer: Decide if this sequence admits a correspondence, that is to say a sequence
of indexes i1, i2, · · · , im of {1,2, · · · ,n} such that

ui1 ui2 · · ·uim = vi1 vi2 · · ·vim .

Theorem 9.12 The problem Post correspondence problem is undecidable.
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9.5.3 Decidability/Undecidability of theories in logic

We have already presented in Chapter 6, the axioms of Robinson arithmetic and the
axioms of Peano: One expects these axioms to be true on the integers, that is to say in
the standard model of the integers where the base set is the integers, and where + is
interpreted by addition, ∗ by multiplication, and s(x) is interpreted by the function
that maps x to x +1.

Given some closed formula F on the signature that contains the symbols of arith-
metic, F is either true or false on the the integers (that is to say in the standard model
of the integers). Let’s call theory!of the arithmetic the set T h(N) of closed formulas F
which are true on the integers.

The constructions of the previous chapter proves the following result:

Theorem 9.13 T h(N) is not decidable.

Proof: We prove in the following chapter that T h(N) is not computably enumer-
able. It is then sufficient to observe that a decidable set is computably enumerable
to obtain a contradiction with assuming T h(N) decidable. □

We can prove (we will not do it) that if one considers the set of formulas written
without using the multiplication symbol, then the associated theory is decidable.

Theorem 9.14 One can decide if a closed formula F on signature (0, s,+,=) (i.e.
the one from Peano without the multiplication symbol) is satisfied on the inte-
gers.

We also obtain the following results:

Theorem 9.15 Let F be a closed formula on the signature of Peano axioms. The
decision problem that consists, given F , to determine whether it can be proved
from the axioms of Peano is undecidable..

Proof: Given some pair 〈〈M〉, w〉, where M is a machine and w a word, we show
in the next chapter how to produce some closed formula γ on the signature of arith-
metic such that

〈〈M〉, w〉 ∈ HP ⇔ γ ∈ T h(N),

where HP is the complement of the halting problem of Turing machines.
But, doing so, one can check that the reasoning that is done for that can be for-

malized with Peano arithmetic and can be deduced from Peano axioms.
We consequently have actually 〈〈M〉, w〉 ∈ HP if and only if γ can be proved from

Peano axioms.
This provides a reduction from the complement of the universal problem of Tur-

ing machines to our problem: The transformation that maps 〈〈M〉, w〉 to γ is indeed
easily computable. Our problem is hence undecidable, since the first is. □

One can prove.
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Theorem 9.16 One can decide if some closed formula F on the signature (0, s,+,=
) (i.e. the one from Peano without the multiplication symbol) is provable from
Peano axioms.

9.6 Fixpoint problems

The results of this section are very subtle, but extremely powerful.
Let us start by a simple version, that will help understanding the proofs.

Proposition 9.7 There exists a Turing machine A∗ that produces its own algo-
rithm: It outputs 〈A∗〉.

In other words, it is possible for a program to write its own code.
This is true in any programming language which is equivalent to Turing ma-

chines.
In UNIX shell for example, the following program

x=’y=‘echo . | tr . "\47" ‘; echo "x=$y$x$y;$x"’; y=‘echo . | tr .
"\47"‘; echo "x=$y$x$y;$x"

produces

x=’y=‘echo . | tr . "\47" ‘; echo "x=$y$x$y;$x"’; y=‘echo . | tr .
"\47"‘; echo "x=$y$x$y;$x"

which is a command, once executed, prints its own code.
Such programs are sometimes called quines, in honor of philosopher Willard van

Orman Quine, who discussed the existence of self-reproducing programs.
Proof: We consider Turing machines which halt on every input. For two such

machines A and A′, we write A A′ for the Turing machine that is obtained by com-
posing in a sequential manner A and A′. Formally, A A′ is the Turing machine that
runs first the program of A and then when A halts with its tape set to w , runs the
program of A′ on the input w .

We construct the following machines:

1. Given a word w , the Turing machine Pr i ntw halts with the result w ;

2. For a given input w of the form w = 〈X 〉, where X is a Turing machine, the
Turing machine B produces as output the encoding of the Turing machine
Pr i ntw X , that is to say the encoding of the Turing machine obtained by com-
posing Pr i ntw and X .

We consider then the Turing machine A∗ given by Pr i nt〈B〉B , that is to say the
sequential composition of the machines Pr i nt〈B〉 and B .

Let us unfold the result of this machine: The Turing machine Pr i nt〈B〉 produces
as output 〈B〉. The sequential composition with B produces then the encoding of
Pr i nt〈B〉B , which is indeed the encoding of the Turing machine A∗. □

The recursion theorem allows self references in programing languages. Its proof
consists of extending the ideas behind the proof of the previous result.



152 CHAPTER 9. COMPUTABILITY

Theorem 9.17 (Recursion theorem) Let t : M∗ × M∗ → M∗ be a computable
function. Then there exists a Turing machine R which computes a function r :
M∗ → M∗ such that for all words w

r (w) = t (〈R〉, w).

Tje statement of the Recursion Theorem is rather technical, but its use is sim-
ple. To obtain a Turing machine that obtains its own description, and use it to com-
pute, we simply need a Turing machine T which computes some function t as in
the statement, that takes as input some supplementary entry which contains the
description of the Turing machine. Then the recursion theorem produces a new
machine R which operates as T but with the description of 〈R〉 encoded in its code.

Proof: We use basically the same idea as before. Let T be a Turing machine that
computes a function t : T takes as input a pair 〈u, w〉 and produces as output t (u, w).

We then consider the following machines:

1. Given a word w , the Turing machine Pr i ntw takes as input a word u and halts
with the result 〈w,u〉;

2. For a given input w ′ of the form 〈〈X 〉, w〉, the Turing machine B :

(a) computes 〈〈Pr i nt〈X 〉X 〉, w〉, where Pr i nt〈X 〉X denotes the Turing ma-
chine which composes Pr i nt〈X 〉 with X ;

(b) and then gives the control to the Turing machine T .

We consider then the Turing machine R given by Pr i nt〈B〉B , that is to say the
Turing machine obtained by composing Pr i nt〈B〉 with B .

Let us unfold the result r (w) of this machine R on an input w : On the input w ,
the Turing machine Pr i nt〈B〉 produces as output 〈〈B〉, w〉. The composition with
B produces then the encoding of 〈〈Pr i nt〈B〉B〉, w〉, and gives the control to T . The
latter produces then t (〈Pr i nt〈B〉B〉, w) = t (〈R〉, w) = r (w). □

We directly obtain the followign result:

Theorem 9.18 (Kleene fixed point theorem) Let f be a computable function that
to every word 〈A〉 encoding a Turing machine associates a word 〈A′〉 = f (〈A〉) en-
coding a Turing machine. For conciseness, write A′ = f (A) in that case.

Then there exists a Turing machine A∗ such that L(A∗) = L( f (A∗)).

Proof: Consider a function t : M∗ × M∗ → M∗ such that t (〈A〉, x) is the result
of the simulation of the Turing machine f (A) on input x. By the previous theo-
rem, there exists a Turing machine R which computes a function r such that r (w) =
t (〈R〉, w). By construction A∗ = R and f (A∗) = f (R) have hence the same value on
w for all w . □

Remark 9.12 One can interpret the previous results in relation with computer
viruses. Indeed a virus is a program that aims at propagating, that is to say at
self-reproducing, without being detected. The principle of the previous proof of
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the recursion theorem is a way to self-reproduce, by duplicating its own code.

9.7 A few remarks

9.7.1 Computing on other domains

We have introduced the notion of decidable sets, computably enumerable, for the
subsets of Σ∗, and the notion of (total) computable function f :Σ∗ →Σ∗.

One may want to work on other domains than words over some given alphabet,
for example on the integers. In that case, on can simply consider encodings of inte-
gers by their binary expansion to come back to the case of a word on the alphabet
{0,1}.

Remark 9.13 One could also encode an integer for example in unary, i.e., n by
an for a letter a on some alphabetΣwith a ∈Σ. This would not change the notion
of computable function.

In the general case, to work on some domain E , one fixes some encoding of the
elements of E in some alphabet Σ: One then says for example that a subset S ⊂
E is computably enumerable (respectively decidable) if the subset of encodings of
elements of E is computably enumerable (resp. decidable).

Similarly, a (total) function f : E → F is called computable if the function from
the encoding e ∈ E to the encoding of f (e) ∈ F is computable.

Example 9.2 We can encode n⃗ = (n1, . . . ,nk ) ∈Nk by

〈n⃗〉 = an1+1ban2+1b · · ·ank+1

on the alphabet Σ = {a,b}. A function f : Nk → N is called computable if it is
computable with respect to this encoding.

The obtained notions of computable functions, semi-decidability, etc. do not de-
pend on the encodings, for the usual encodings (actually technically as soon as one
can go from one encoding to the other encoding in a computational way, a property
that holds for all “natural” encodings of objects, and in particular for all encodings
considered in this document).

9.7.2 Algebraic vision of computability

The notions of computability are sometimes introduced in an algebraic manner, by
talking about functions over the integers.

In particular, one can introduce the notion of computable partial function, which
extends the notion of computable functions to the case of non-total functions.
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Definition 9.20 (Partial computable function) Let f : E → F be a function, pos-
sibly partial.

The function f : E → F is computable if there exists a Turing machine A
such that for any word w encoding an element e ∈ E in the domain of f , the
machine A on the input w, halts and accepts with the encoding of f (e) written
on its tape at the moment when it halts.

Of course, this notion matches to the previous notion for the case of total func-
tions.

One can characterize in a purely algebraic way the notion of computable func-
tions:

Definition 9.21 (Recursive functions) A (possibly partial) function f :Nn →N

is recursive if it is either the constant 0, or one of the functions:

• Zero : x 7→ 0 the function 0;

• Succ : x 7→ x +1 the successor function;

• Projin : (x1, . . . , xn) 7→ xi the projection functions for 1 ≤ i ≤ n;

• Compm(g ,h1, . . . ,hm) : (x1, . . . , xn) 7→ g (h1(x1, . . . , xn), . . . ,hm(x1, . . . , xn)) the
composition of the recursive functions g ,h1, . . . ,hm ;

• Rec(g ,h) the function defined by recurrence as{
f (0, x2, . . . , xn) = g (x2, . . . , xn),

f (x1 +1, x2, . . . , xn) = h( f (x1, . . . , xn), x1, . . . , xn),

where g and h are recursive.

• Min(g ) the function that to (x2, . . . , xn) associates the least y ∈N such that

g (y, x2, . . . , xn) = 1

if there is one (and which is not defined otherwise) where g is recursive.

A primitive recursive function is a function that can be defined without using
the schema Min.

One can prove the following result:

Theorem 9.19 A function f :Nn →N is recursive if and only if it is computable
by some Turing machine.

The notion of decidability or semi-decidability can then also be defined in an
algebraic way:
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Theorem 9.20 A subset S ⊂N is decidable if the characteristic function of S, i.e.,

the (total) function χ : n 7→
{

1 if n ∈ S
0 if n ̸∈ S

is recursive.

Theorem 9.21 A subset S ⊂N is semi-decidable if the (partial) function

n 7→
{

1 if n ∈ S
undefined if n ̸∈ S

is recursive.

Exercise 9.3 (solution on page 235) Prove these theorems.

9.8 Exercises

*Exercise 9.1 (solution on page 235) [Generalized halting problem] Let A be a
decidable subset of the set of encodings of Turing machines, such that all ma-
chines of A always halt.

Then A is incomplete: There exists some (unary) total function f : N → N

computable that is not represented by any Turing machine of A.
Explain why this result implies the halting problem.

Exercise 9.4 (solution on page 235) Let E ⊂N be a computably enumerable
set enumerated by some computable function f strictly increasing. Prove
that E is decidable.

Exercise 9.5 (solution on page 236) Deduce that any infinite computably
enumerable set ofN contains some infinite decidable subset.

Exercise 9.6 (solution on page 236) Let E ⊂N be a decidable set. Prove that
it can be enumerated by some computable function f strictly increasing.
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Exercise 9.7 (solution on page 236) Let A ⊂ N2 be a decidable set of pairs
of integers.

Write ∃A for the (first) projection of A, that is to say the subset of N de-
fined by

∃A = {x|∃y ∈N such that (x, y) ∈ A}.

1. Prove that the projection of a decidable set is computably enumer-
able.

2. Prove that any computably enumerable set is the projection of some
decidable set.

Exercise 9.8 A real number a is called computable if there exist computable
functions F and G fromN toN such that for any n > 0 we have G(n) > 0 and∣∣∣∣|a|− F (n)

G(n)

∣∣∣∣≤ 1

n
.

1. Prove that any rational number is computable.

2. Prove that
p

2, π, e are computable.

3. Prove that any real number 0 < a < 1 is computable if and only there
exists a computable radix 10 expansion of a, that is to say a com-
putable function H :N→N such that for all n > 0 we have 0 ≤ H(n) ≤
9 and

|a| =
∞∑

n=0

H(n)

10n .

4. Prove that the set of computable reals is a countable sub-field of R,
such that any polynomial of odd degree has a root.

5. Give an example of a non-computable real.

Exercise 9.9 A “useless” internal state of a Turing machine is a state q ∈ Q
in which the machine never enters on any input. Formulate the problem
to decide whether a given Turing machine has a useless state as a decision
problem, and prove that it is undecidable.
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Exercise 9.10 (solution on page 236) Consider the following decision prob-
lem: A Turing machine A is given, and one wants to determine

1. if L(A) contains at least two distinct words

2. if L(A) is empty

Is the problem decidable? semi-decidable?

9.9 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest read-
ing the books [Sipser, 1997] and[Hopcroft & Ullman, 2000] in English, or [Wolper, 2001],
[Stern, 1994] [Carton, 2008] in French.

The book [Sipser, 1997] is very pedagogical.

Bibliography This chapter contains some standard results from computability. We
used essentially their presentation in [Wolper, 2001], [Carton, 2008], [Jones, 1997],
[Kozen, 1997], [Hopcroft & Ullman, 2000], as well as in [Sipser, 1997].



158 CHAPTER 9. COMPUTABILITY



Chapter 10

Incompleteness of arithmetic

In 1930, Kurt Gödel proved a result whose philosophical consequences in science
started a revolution: He proved that any sufficiently expressive theory to capture the
arithmetic reasoning’s is necessarily incomplete, that is to say that there exists some
statements that cannot be proved, and whose negation can nor be proved.

This theorem is largely considered as one of the greatest achievements of the
logic in the 20th century.

With all the previous ingredients, we are in position to understand this theorem,
and to provide a full proof. This is the objective of this chapter. Actually, we will
propose a proof due to Turing. We will only mention the proof from Gödel, that
allows to say more.

10.1 Theory of Arithmetic

10.1.1 Peano axioms

The question we are focusing on now is to try to axiomatise the arithmetic, that is to
say the properties of the inters.

We have already presented in Chapter 6, the axioms of the arithmetic from Robin-
son and the axioms from Peano: One expects that all these axioms are satisfied on
the integers, that is to say in the standard model of the integers where the base set is
the integers, and where + is interpreted by addition, ∗ by multiplication and s(x) by
successor function x 7→ x +1.

In other words, one expects that these axioms have at least one model: The stan-
dard model of the integers.

Given some closed formula F on the signature containing these symbols, F is ei-
ther true or false on the integers (that is to say in the standard model of the integers).
Call theory!of the arithmetic the set T h(N) of closed formula F that are true over the
integers.

159
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10.1.2 Some concepts from arithmetic

It is possible to prove that numerous concepts from number theory can be defined
perfectly from these axioms.

For example, we can express the following concepts:

• INTDIV(x, y, q,r ) defined as “q is the quotient and r the remainder of the eu-
clidean division of x by y”.

Indeed, this can be written as formula:

(x = q ∗ y + r ∧ r < y).

• DIV(y, x) defined as “y divides x”.

Indeed, this can be written:

∃q INTDIV(x, y, q,0).

• EVEN(x) defined as “x is even". Indeed, this can be written:

DIV(2, x).

• ODD(x) defined as “x is odd. Indeed, this can be written:

¬EVEN(x).

• PRIME(x) defined as “x is prime”. Indeed, this can be written:

(x ≥ 2∧∀y(DIV(y, x) ⇒ (y = 1∨ y = x))).

• POWER2(x) defined as “x is a power of 2". Indeed, this can be written:

∀y((DIV(y, x)∧PRIME(y)) ⇒ y = 2).

10.1.3 The possibility of talking of bits of an integer

One can also write formulas like BIT(x, y) that means that “y is a power of 2, say 2k ,
and the kth bit of the binary representation of integer x is 1”’.

This is more subtle, but possible. Indeed, this can be written:

(POWER2(y)∧∀q∀r (INTDIV(x, y, q,r ) ⇒ ODD(q))).

The idea is that if y satisfies the formula, then y is a power of 2, and hence in
binary is written 2k for some integer k. By dividing x by y , the remainder of the
division r will be the k less significant bits of x and the quotient q the other bits of
x since we have x = q ∗ y + r . By testing if q is odd, one “reads” the k +1th bit of x,
hence the bit corresponding to the bit set to 1 in the integer y encoding this position.
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10.1.4 Principle of the proof from Gödel

Kurt Gödel proved the incompleteness theorem by building in any reasonable proof
system a formulaφ from arithmetic that states its own non-provability in the system:

φ is true ⇔φ is not provable. (10.1)

Every reasonable proof system is valid, and hence one must have.

ψ provable ⇒ψ is true. (10.2)

Then φ must be true, since otherwise.

φ is wrong ⇒φ is provable. (par (10.1))
⇒φ is true. (by (10.2))

The construction ofφby itself is instructive, as it captures the notion of self-reference.
We will come back to the construction from Gödel.

10.2 Incompleteness theorem

10.2.1 Principle of the proof from Turing

We will prove the incompleteness theorem by using an approach that allows to get
the main consequences of the theorem, and which is due to Alan Turing.

This approach is simpler, and mainly, we have now all the ingredients to do full
formal proof, by using the arguments from computability theory.

The idea is to convince ourselves that in Peano arithmetic, as well as in any "rea-
sonable" proof system for the theory of arithmetic:

Theorem 10.1 1. The set of theorems (closed formula that can be proved from
the Peano axioms (or any "reasonable" axiomatisation of integers)) is com-
putably enumerable.

2. The set T h(N) of closed formal F that are rue on the integers is not com-
putably enumerable.

Consequently, the two sets cannot be the same, and the proof system cannot be
complete. In other words:

Corollary 10.1 There consequently exist some closed formula of T h(N) that can-
not be proved, or whose negation cannot be proved from Peano axioms or from
any "reasonable" axiomatisation of the integers.

This is the first incompleteness theorem from Kurt Gödel.
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Exercise 10.1 (solution on page 236) How to conciliate the previous in-
completeness result (Gödel incompleteness theorem) with the completeness
theorem (Gödel completeness theorem)?

10.2.2 The easy direction

The set of theorems (closed formula provable from Peano axioms) is certainly com-
putably enumerable: Whatever the proof method is (see for example those of Chap-
ter 6), one can enumerate the theorems by enumeration the axioms and by applying
in a systematic way all the reduction rules in all the possible manners, and produce
as an output all the closed formula that can be derived.

This remains true as soon as we suppose that one can enumerate the axioms of
the axiomatisation that one starts from. This is why, one can state that the set of
theorems from any reasonable axiomatisation of the integers is recursively enumer-
able.

Remark 10.1 In other words, if one wants a formal definition of “reasonable”,
one can take “computably enumerable”.

10.2.3 Crucial lemma

The crucial point is then to prove the following lemma.

Lemma 10.1 The set T h(N) is not computably enumerable.

We prove this by reducing the complementary HP of the halting problem of Tur-
ing machines to this problem, i.e. by proving that HP ≤m T h(N).

The theorem then follows from:

• HP is not recursively enumerable;

• and from the fact that A ≤m B and that A is not recursively enumerable, then
consequently neither B .

Remember that the halting problem HP is the following problem: Given 〈〈M〉, w〉,
one must determine if the Turing machine M halts on input w .

Given 〈〈M〉, w〉, we show how to produce a closed formula γ on the signature of
arithmetic such that

〈〈M〉, w〉 ∈ HP ⇔ γ ∈ T h(N).

In other words, given M and w , we must produce a closed formula γ on the
signature of arithmetic that states that “the Turing machine M is not halting on input
w”.

This turns out to be possible since the language of arithmetic is sufficiently pow-
erful to talk about Turing machines and the fact that they halt.
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By using the principle of the previous formula BIT(y, x), we will construct a se-
quence of formula whose culminating point will be a formula VALCOMPM ,w (y) that
asserts that y is some integer that represents a sequence of configurations of M on
input w : In other words, y represents a sequence of configurations C0,C1, · · · ,Ct of
M , encoded on a given alphabet Σ such that:

• C0 is the initial configuration C [w] of M on w ;

• Ci+1 is the successor configuration o f Ci , according to the transition function
δ of the Turing machine M , for i < t ;

• Ct is some accepting configuration

Once we will succeed to write the formula VALCOMPM ,w (y), it will be easy to
write that M is not halting on input x: The formula γ can be written as

¬∃y VALCOMPM ,w (y).

This proves the reduction and will terminate the proof of previous lemma, and
hence the proof of the theorem, recalling that HP is not recursively enumerable.

10.2.4 Construction of the formula

There only remain to provide the tedious details of the construction of the formula
γ from M and w . Let us go.

Suppose that we encode the configurations of M on some finite alphabet Σ, that
we will suppose without loss of generality of size p, with p some prime integer.

Every number has a unique representation in radix p: We will use this represen-
tation in radix p instead of the the binary representation to simplify the discussion.

Suppose that the initial configuration of M on w = a1a2 · · ·an is encoded by the
integer whose digits in radix p are respectively q0a1a2 · · ·an : We use the representa-
tion of the Definition 7.4 to represent configurations.

Consider that the blank symbol B is coded by digit k in radix p.
Let LEGAL the set of 6-tuples (a,b,c,d ,e, f ) of numbers in radix p that corre-

spond to some legal windows for machine M : See the notion of legal window of
Chapter 7. If one prefers, LEGAL is the set of 6-tuples (a,b,c,d ,e, f ) such that these
three elements of Σ represented respectively by a,b and c appear consecutively in
a configuration Ci , and if d ,e, f appear consecutively in same locations in configu-
ration Ci+1, then this is coherent with the transition function δ of Turing machine
M .

We now define a few formulas:

• POWERp (x): “The number x is a power of p”: Here p is a fixed primed number.
This can be written:

∀y((DIV(y, x)∧PRIME(y)) ⇒ y = p).
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• LENGTHp (v,d): “The number d is a power of p that provides (an upper bound
of) the length of v seen as a word on alphabet Σ with p letters. This can be
written:

(POWERp (d)∧ v < d ∧p ∗ v ≥ d).

• DIGITp (v,K ,b): “The ’kth digit of v written in radix p is b (where K = pk )”.
This can be written:

∃u∃a(v = a +b ∗K +u ∗p ∗K ∧a < K ∧b < p).

• 3DIGITp (v,K ,b,c,d): “The 3 consecutive digits of v at position k are b, c and
d (where K = pk )”. This can be written

∃u∃a(v = a+b∗K+c∗p∗K+d∗p∗p∗K+u∗p∗p∗p∗K∧a < K∧b < p∧c < p∧d < p).

• MATCHp (v,L, M): “The 3 digits of v at the position ℓ are respectively a, b and c
and correspond to the 3 digits of v at the position m according to the transition
function δ of the Turing machine (where L = pℓ and M = pm). This can be
written ∨

(a,b,c,d ,e, f )∈LEGAL
3DIGITp (v,L, a,b,c)∧3DIGITp (v, M ,d ,e, f ).

Remark 10.2 We write obviously here,
∧

(a,b,c,d ,e, f )∈LEGAL for the conjunc-
tion for each of the 6-tuples of LEGAL.

• MOVEp (v,C ,D): “The sequence v describe1 a sequence of successive config-
urations of M of length c until d (where C = pc and D = pd ): All the pairs of
sequences of 3-digits separated by exactly c positions in v are corresponding
according to δ”. This can be written as:

∀y((POWERp (y)∧ y ∗p ∗p ∗C < D) ⇒ MATCHp (v, y, y ∗C )).

• STARTp (v,C ): “The sequence v starts with the initial configuration of M on
input w = a1a2 · · ·an with the addition of some blanks B until length c (C = pc ;
n, p i ,0 ≤ i ≤ n are some fixed constants that are not depending of w)”. This
can be written:

n∧
i=0

DIGITp (v, p i , ai )∧pn <C∧∀y(POWERp (y)∧pn < y <C ⇒ DIGITp (v, y,B)).

• HALTp (v,D): “The sequence v has some accepting state somewhere”. This
can be written as:

∃y(POWERp (y)∧ y < D ∧DIGITp (v, y, qa)).
1We see here a two-dimensional array as a unique word by putting the lines one after the other.
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• VALCOMPM ,w (v): “The sequence v is a valid computation of M on w”. This
can be written as:

∃c∃d (POWERp (c)∧c < d∧LENGTHp (v,d)∧STARTp (v,c)∧MOVEp (v,c,d)∧HALTp (v,d)).

• γM ,w : “The machine M is not halting on w”. This can be written as:

¬∃v VALCOMPM ,w (v).

Our proof is over.

*Exercise 10.1 (solution on page 236) The default of the previous constructions
is that they allow to claim that there exists some true formulas which are not
probable, but without providing any example of such a closed formula.

Use the fix point theorem of computability (previous chapter) to provide ex-
plicitly a formula ψ which is not provable.

We will see later that the second theorem from Kurt Gödel allows to go further,
and to prove that one can take ψ as the formula that asserts that the theory is not
consistent.

(The solution of the previous formula produces a formula ψ whose practical in-
terpretation is not clear).

10.3 The proof from Gödel

Kurt Gödel proved his incompleteness theorem in another manner, by constructing
a closed formula that states its own non-provability. Write ⊢ for provable and |= for
true over the integers.

Suppose that we fix an encoding of formulas by the integers in any reasonable
manner: If φ is a formula, then 〈φ〉 denotes its encoding (an integer).

10.3.1 Fixpoint lemma

Here is a lemma that has been proved by Gödel, and that reads similar to the fixed
point theorems already mentioned in previous chapter.

Lemma 10.2 (Gödel’s fixpoint theorem) For any formulaψ(x)with free variable
x, there is a closed formula τ such that

⊢ τ⇔ψ(〈τ〉),

i.e. the closed formula τ andψ(〈τ〉) are provably equivalent in Peano arithmetic.

Proof: Let x0 be a fixed variable. One can certainly construct a formula SUBST(x, y, z)
with free variables x, y, z which claims “the number z is the encoding of a formula
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obtained by substituting the constant whose value is x in any occurrence of the free
variable x0 in the formula whose encoding is y".

For example, if φ(x0) is a formula that contains a free occurrence of x0, but no
other free variable, the formula SUBST(7,〈φ(x0)〉,312) is true if 312 = 〈φ(7)〉.

We will not provide the details of the construction of the formula SUBST, but
the idea is to observe that this is indeed possible, by using for example the idea of
relation BIT(x, y).

One considers nowσ(x) defined by ∀y (SUBST(x, x, y) ⇒ψ(y)), and τ defined by
σ(〈σ(x0)〉).

Then τ is the desired solution, since

τ = σ(〈σ(x0)〉)
= ∀y (SUBST(〈σ(x0)〉,〈σ(x0)〉, y) ⇒ψ(y))
⇔ ∀y y = 〈σ(〈σ(x0)〉)〉⇒ψ(y)
⇔ ∀y y = 〈τ〉⇒ψ(y)
⇔ ψ(〈τ〉)

Of course, we have used here some informal equivalences, but the argument can
indeed be fully formalized in Peano arithmetic. □

10.3.2 Arguments from Gödel

We observe now that the language of arithmetic is sufficiently expressive to talk
about provability in Peano arithmetic. In particular, it is possible to code a sequence
of formulas by an integer and to write a formula PROOF(x, y) that means that the
sequence of formulas whose encoding is x is a proof of the formula whose encoding
is y .

In other words, ⊢ PROOF(〈π〉,〈ψ〉) ⇔π is a proof of ψ in Peano arithmetic.
The provability in Peano arithmetic can hence be coded by the formula PROVABLE(y)

defined by ∃x PROOF(x, y).
Then for any closed formula φ,

⊢φ⇔ |=PROV ABLE(〈φ〉). (10.3)

We then have

⊢φ⇔ ⊢ PROV ABLE(〈φ〉). (10.4)

The direction ⇒ is true since if φ is provable then there is a proof π of φ. The
arithmetic of Peano and the proof system allow to use this proof to prove φ (i.e. that
PROOF(〈π〉,〈φ〉)). The direction ⇐ follows from 10.3 and from the validity of proof
in Peano arithmetic.

Let us then use the point fix lemma to the closed formula ¬PROVABLE(x). We
then obtain a closed formula ρ that states its own non-provability:

⊢ ρ⇔¬ PROVABLE(〈ρ〉),
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in other words, ρ is true if and only if it is not provable in Peano arithmetic.
From the validity of proof in Peano arithmetic, we have

|= ρ⇔¬ PROVABLE(〈ρ〉). (10.5)

Then formula ρ must be true, since otherwise then

|= ¬ρ ⇒ PROVABLE(〈ρ〉) (by 10.5)
⇒ ⊢ ρ (by 10.3)
⇒ |= ρ (by validity of Peano arithmetic)

a contradiction.
So |= ρ. But now,

|= ρ ⇒ ¬PROVABLE(〈ρ〉) (by 10.5)
⇒ ̸|= ρ (by definition of truth)
⇒ ̸⊢ ρ (by 10.3)

Hence ρ is true, but cannot be proved.

10.3.3 Second incompleteness theorem from Kurt Gödel

The default of the previous proof is of course that it does not really make sense to
formula ρ.

The second incompleteness theorem from Kurt Gödel provides an explicit exam-
ple of a formula that cannot be proved.

One can express a formula CONSIST that expresses the fact that the theory is
consistent. Basically, one writes that its is not possible to prove a formula F and its
negations: It is “sufficient”’ to write¬∃x(PROVABLE(x)∧PROVABLE(y)∧N EG(x, y)),
where N EG(x, y) means that y is the encoding of the negation of the formula en-
coded by x.

The second incompleteness theorem from Kurt Gödel allows to prove that this
precise formula cannot be proved.

In other words:

Theorem 10.2 (Second incompleteness theorem from Kurt Gödel) No deduc-
tion system can prove its own consistency.

We will not go into further details.

10.4 Bibliographic notes

Suggested readings To go further with the notions of this chapter, we suggest the
reading of the last chapters of the book [Kozen, 1997], which remain short and direct,
or of the book [Cori & Lascar, 1993b] for a complete proof.

Bibliography This chapter is taken from one of the last three chapters of the excel-
lent book [Kozen, 1997].
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Chapter 11

Basic of complexity analysis of
algorithms

The previous discussions have been concerned with the existence or non-existence
of algorithms for solving a given problem, but ignoring an essential practical aspect:
the resources needed for its execution, that is to say for example the computation
time or the memory that is required on the machine for its execution.

The objective of the next chapter is to focus on one resource, the computation
time. In the later chapters, we will evoke other resources such as memory space.
We could also talk about parallel time, that is to say the time required on a parallel
machine.

Let us however start by better understanding the difference between previous
chapters and the following chapters. In previous chapters, we were talking about
computability, that is to say we asked about the existence of an algorithmic solution
to a given problem. We will now focus on complexity: That is to say, we focus now on
decidable problems, i.e., problems for which an algorithm is known. The question
is to decide whether there is an efficient algorithm.

This leads first to the question what one calls efficient, and how this efficiency
can be measured. First of all, we think it is important that our reader has clear ideas
on what is called the complexity of an algorithm and the complexity of a problem,
which are not the same concept.

Remark 11.1 Even if we will talk about average case complexity in this chapter,
we will not need this in the coming chapters : We introduce it here mainly to
explain why average case complexity is not used much in practice (at least in
complexity theory).

11.1 Complexity of algorithm

In this chapter, we mostly consider a (decision or general) problem P for which one
knows an algorithm A : This algorithm is known to be correct, and is terminating. It

169
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takes as input some data d , and it produces as its output a result A (d) by using some
resources (so we will only talk about decidable problems for decision problems).

Example 11.1 The problem P could for example consist in determining if a
given number v is among a list of nb numbers.

It is clear that one can come up with an algorithm A to solve this problem.
For example:

• one uses a variable res initially set to 0;

• one scans the list, and for each element:

– one checks if this element is the number v:

* it this is the case, one sets the variable res to 1;

• at the end of the loop, on returns r es.

This algorithm certainly is not the most efficient that one can think of. First,
we could stop as soon as one sets res to 1, since the answer is known. Further-
more, one can clearly do something different, such as a dichotomic search (a
recursive algorithm) if one knows that the list is sorted.

11.1.1 First considerations

One always measures the efficiency, that is to say the complexity of an algorithm in
terms of an elementary measure with integer value: This can be the number of in-
structions executed, the size of the memory that is used, the number of comparisons
made, or any other measure.

One just needs that, given an input d , one knows how to associate the value of
this measure, denoted by µ(A ,d), to the algorithm A on input d . For example, for
a sorting algorithm working with comparisons, if the elementary measure µ is he
number of comparisons done, µ(A ,d) is the number of comparison performed on
the input d (a sequence of integers) by an algorithm A to produce the result A (d)
(the sorted list).

The function µ(A ,d) depends of A , but also of the input d . The quality of an
algorithm A is hence not an absolute criterion, but a quantitative function µ(A , .)
from the inputs to the integers.

11.1.2 Worst case complexity of an algorithm

In practice, to understand the function µ(A , .), one often aims to evaluate the com-
plexity for the inputs of a given size: There is often a function size that maps to every
input data d , an integer size(d), that corresponds to some natural parameter. For ex-
ample, this function can be the number of elements for a sorting algorithm, the size
of a matrix for computing the determinant, or the sum of the lengths of the strings
for a concatenation algorithm.
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To go from a function from the inputs to the integers to a function from the in-
tegers (the sizes) to the integers, one then considers the worst case complexity: The
complexity µ(A ,n) of algorithm A on inputs of size n is defined as

µ(A ,n) = max
d input with size(d)=n

µ(A ,d).

In words, the complexity µ(A ,n) is the worst complexity observed on inputs of
size n.

By default, when one talks about the complexity of an algorithm, one considers
the worst case complexity as above.

If one does not know more on the inputs, there is no real hope to do better than
this pessimistic view of life, and evaluating the complexity in the worst case (the best
case has no particular practical meaning, and in this context, pessimism is far more
significant).

11.1.3 Average case complexity of some algorithm

In order to say more, one must know more about the inputs. For example, that they
are distributed according to some probabilistic distribution.

In that case, we can then talk about average case complexity: The average case
complexity µ(A ,n) of algorithm A of inputs of size n is defined as

µ(A ,n) = E[µ(A ,d)|d inputs with size(d) = n],

where E denotes expectation (the average).

This is equivalent to

µ(A ,n) = ∑
d inputs with size(d)=n

π(d)µ(A ,d),

where π(d) denotes the probability of having this input of size n.

In practice, if the worst case might be rare, and the average case analysis may
seem more appealing.

But first, it is important to know that one cannot talk about expectation/average
without a probability distribution on the inputs. This implies on the one hand that
the distribution of the data given as input must be known, something which is very
delicate to predict or estimate in practice. How to anticipate for example the lists
that will be given to a sorting algorithm?

One sometimes makes the hypothesis that the inputs have same probability (when
this makes sense, as in the case where one wants to sort n numbers between 1 and
n) but this is often very arbitrary, and not totally justifiable.

On the other hand, as we will see, computing the average case complexity is often
more delicate to deal with than worst case analysis.
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11.2 Complexity of a problem

One can also talk about the complexity of a problem which provides a way to talk
about the optimality of an algorithm to solve a given problem.

One fixes a problem P , for example, the problem of sorting a list of integers. Let
Al g (P ) be the class of all algorithms that solves P : an algorithm A of Al g (P ) is an
algorithm that answers to the specification of the problem P : For every input d , it
produces a correct answer A (d).

The complexity of the problem P is defined as the infinimum1 of the complexity
of the algorithms of Al g (P ). Consequently, an algorithm A is optimal if its com-
plexity is equal to the optimal complexity of Al g (P ): That is to say, there is no other
algorithm B ∈ Al g (P ) with a smaller complexity. We write µ(P ,n) for the complex-
ity of some optimal algorithm2 on inputs of size n .

In other words, we do not only make the inputs of size n vary, but also the algo-
rithm. One considers the best algorithm that solves the problem. The best being the
one with the best complexity in terms of previous definition, and hence in the worst
case. This is hence the complexity of the best algorithm in the worst case.

The interest of this definition is to be able to state that some algorithm is optimal:
That is to say, that an algorithm is such that any other correct algorithm would be
less efficient by definition.

11.3 Example : Computing the maximum

We will illustrate the previous discussion with an example: The problem of comput-
ing the maximum. The problem is the following: We are given a list of non-negative
integers e1,e2, · · · ,en , with n ≥ 1, and we want to output M = max1≤i≤n ei , that is the
maximum of these integers.

11.3.1 Complexity of a first algorithm

Assuming that the input is in an array, the following Java function solves the prob-
lem:

s t a t i c int max( int T [ ] ) {
int l = T . length −1;
int M = T[ l ] ;
l = l −1;
while ( l ≥ 0) {

i f (M < T[ l ] ) M = T[ l ] ;
l = l −1;

}
return M;

}

1If it exists.
2Assuming it exists. It may not exist.



11.3. EXAMPLE : COMPUTING THE MAXIMUM 173

Assume that our elementary measure is the number of comparisons. We make
2 comparisons per iteration of the loop, which is executed n −1 times, plus 1 last of
type l ≥ 0 when l has the value 0. We therefore make µ(A ,n) = 2n −1 comparisons
for this algorithm A , where n is the size of the input, that is to say the number of
integers in the list e1,e2, · · · ,en . This number is independent of the input d , and
hence µ(A ,n) = 2n −1.

In contrast, if our elementary measure µ is the number of assignments, we ana-
lyze the complexity as follows: we make 3 assignments before the while loop. Each
iteration of the loop does either 1 or 2 assignments according to the result of the
test M<T[l]. We hence have for an input d of size n, n + 2 ≤ µ(A ,d) ≤ 2n + 1: The
minimal value is reached for a list that has its maximum in its last element, and the
maximum value for a list of n different numbers sorted in decreasing order. So here
µ(A ,d) depends on the input d . The worst case complexity is hence µ(A ,n) = 2n.

11.3.2 Complexity of a second algorithm

If the input is in an array, defined for example by:

class L i s t {
int val ; / / The element
L i s t next ; / / La s u i t e

L i s t ( int val , L i s t next ) {
t h i s . val = val ; t h i s . next = next ;

}
}

the following function solves the problem.

s t a t i c int max( L i s t a ) {
int M = a . val ;
for ( a = a . next ; a ̸= null ; a = a . next ) {

i f ( a . val > M)
M = a . val ; }

return M;
}

Assume that our elementary measure is the number of comparisons between
integers (we are not counting the comparisons between variables of type “reference”
on the type List). We make one comparison per iteration of the loop, that is executed
n −1-times, so n −1 comparisons in total.

The complexity µ(A ,n) of this algorithm A on the inputs of size n is hence n−1.

11.3.3 Complexity of the problem

One can wonder if it is possible to do better, and solve the problems with less than
n −1 comparisons: The answer is no, under the condition that one restricts to algo-
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rithms that work only with comparisons3. Indeed, this algorithm is optimal in terms
of number of comparisons.

Consider the class C of algorithms that solve the problem of finding the maxi-
mum of n elements by using as decision criteria the comparisons between elements,
with the above hypothesis.

Let us start by stating the following property:

Lemma 11.1 Any algorithm A of C is such that any element distinct from the
maximum is compared at least once to an element greater then itself.

Proof: Indeed, let i0 be the index of the maximum M returned by the algorithm
on a list L = e1e2 · · ·en , that is ei0 = M = max1≤i≤n ei . We reason by contradiction:
Let j0 ̸= i0 such that e j0 is not compared to any element greater than itself. Then the
element e j0 has then not been compared to the maximum ei0 .

Consider the list L′ = e1e2 · · ·e j0−1M +1e j0+1 · · ·en obtained from L by replacing
the element of index j0 by M +1.

The algorithm A will do exactly the same comparisons on L and on L′, without
comparing L′[ j0] with L′[i0] and hence will return L′[i0], so an incorrect result. We
reach a contradiction which proves the property. □

It follows from this lemma that it is not possible to find the maximum of n el-
ements with less than n − 1 comparisons between integers. In other words, the
complexity of the problem P of computing the maximum on the inputs of size n
is µ(P ,n) = n −1.

The previous algorithm works with n −1 such comparisons and is thus optimal
for this measures of complexity.

11.3.4 Average case complexity of the algorithm

If our elementary measure µ is the number of assignments inside the for loop, one
sees that the complexity depends on the input.

To evaluate its average case complexity, one needs to make some hypothesis on
the distribution of inputs. Suppose that the lists given as inputs are permutations of
{1,2, · · · ,n}, and that the n! permutations all have same probability.

One can prove [Sedgewick & Flajolet, 1996, Froidevaux et al., 1993] that the av-
erage case complexity on inputs of size n for this elementary measure µ is then Hn ,
the nth harmonic number: Hn = 1+ 1

2 + 1
3 + . . .+ 1

n . The number Hn is of order logn
when n tends to infinity.

However, the computation is rather technical and would be laborious in the
framework of this course.

Let us simplify the discussion, and let us focus on an even simpler problem: In-
stead of finding the maximum in the list e1,e2, . . . ,en , with n ≥ 1, suppose we are
given a list of integers of {1,2, . . . ,k} and some integer 1 ≤ v ≤ k, and we want to
determine if there is some index 1 ≤ i ≤ n with ei = v .

The following algorithm solves the problem:

3If the inputs are integers, and arithmetic is authorized, it may be possible to decrease the number of
comparisons. We will not discuss this type of algorithms here.
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s t a t i c boolean f ind ( int [ ] T , int v ) {
for ( int i = 0 ; i < T . length ; i ++)

i f (T[ i ] == v )
return true ;

return f a l s e ;
}

Its worst case complexity in terms of elementary instructions is linear in n, since
the loop is executed n times in the worst case.

Observe that the lists given as inputs are functions from {1,2, . . . ,n} to {1,2, . . . ,k},
that we will call array. Suppose that each of these arrays has the same probability to
be the input.

Observe that there are kn arrays. Among those, (k −1)n do not contain the ele-
ment v and in that case, the algorithm performs exactly n iterations. In the contrary
case, the integer is in the array, and its first occurrence is then i with probability

(k −1)i−1

k i

and the algorithms stops after i iterations.

In total, we have a average case complexity of

C = (k −1)n

kn ×n +
n∑

i=1

(k −1)i−1

k i
× i

But for all x we have
n∑

i=1
i xi−1 = 1+xn(nx −n −1)

(1−x)2

(to establish this result, it is sufficient to take derivative of
∑n

i=1 xi = 1−xn+1

1−x ) and
hence

C = n
(k −1)n

kn +k

(
1− (k −1)n

kn (1+ n

k
)

)
= k

(
1−

(
1− 1

k

)n)

11.4 Asymptotics

11.4.1 Asymptotic complexity

As we have seen in the previous example, a precise and complete study of the com-
plexity of a problem can be very fastidious, and often hard. This is why the focus
in computer science is often on the order of growth of the (asymptotic) complex-
ity when the size n of the inputs becomes very big. Such an analysis is often quite
representative of the performance of the algorithm, even if of course, talking about
asymptotics up to some constants has its limits.
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11.4.2 Landau notations

As it is the custom in computer science, one often reasons on the order of growth
using the O (.) notation. We recall the following notations:

Definition 11.1 (Notation O (.)) Let f and g be two functions f , g :N→R>0. We
write f (n) =O

(
g (n)

)
if there exist integers c and n0 such that for all n ≥ n0,

f (n) ≤ cg (n).

Intuitively, this means that f is lower than g up to some multiplicative constant,
for sufficiently big input instances.

In a similar way, one defines:

Definition 11.2 (Notations o,Ω,Θ) Let f and g be two functions f , g :N→R>0.

• We write f (n) = o(g (n)) if for all positive real numbers c there exists an
integer n0 such that for all n ≥ n0,

f (n) ≤ cg (n).

• We write f (n) = Ω(g (n)) if there exist integers c and n0 such that for all
n ≥ n0,

cg (n) ≤ f (n).

(we have in this case g =O
(
( f )

)
)

• We write f (n) =Θ(g (n)) when f (n) =O
(
g (n)

)
and f (n) =Ω(g (n)) hold.

Exercise 11.1 (solution on page 237) Let f and g be two functions such
that

lim
n→∞

f (n)

g (n)

exists and is a number c > 0. Prove that f (n) =Θ(g (n)).

Exercise 11.2 Prove:

• If f =O
(
g
)

and g =O (h) then f =O (h).

• If f =Ω(g ) and g =Ω(h) then f =Ω(h).

• If f =Θ(g ) and g =Θ(h) then f =Θ(h).
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Exercise 11.3 (solution on page 237) Give some examples of algorithms of
respective complexity (in terms of number of instructions):

• linear, that is O(n)

• O(n logn)

• cubic, that is O(n3)

• non-polynomial

Exercise 11.4 (solution on page 238) Suppose that one has algorithms with
the complexities listed below (assuming that this corresponds to some exact
times). How much are these algorithms slowed down when (a) the size of
the input is doubled (b) the size of the input is increased by 1.

1. n2

2. n3

3. 100n2

4. n logn

5. 2n

11.5 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
the first chapters of [Kleinberg & Tardos, 2006], or of the course INF421 (old version)
of École Polytechnique.

Bibliography The text of this chapter is taken from a text that we wrote for the lec-
ture notes of INF412. It is inspired by the introduction of the textbook [Kleinberg & Tardos, 2006].
The analysis of the computation of the maximum and its variations is based on the
book [Froidevaux et al., 1993].
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Chapter 12

Time complexity

This chapter is focusing on some particular resource of an algorithm: The times it
takes to be executed.

The previous chapter applies in particular to this measure: The computation
time of some algorithm is defined as the time it takes to be executed.

To illustrate the importance of this measure of complexity, let us focus on the
time corresponding to algorithms of complexity n, n log2 n, n2, n3, 1.5n , 2n and n!
for input of size n, for increasing n, on a processor able to execute one million of
elementary instructions by second. We write ∞ in the array as soon as values more
than 1025 years (this figure is repeated from [Kleinberg & Tardos, 2006]).

Complexity n n log2 n n2 n3 1.5n 2n n!
n = 10 < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 4 s
n = 30 < 1 s < 1 s < 1 s < 1 s < 1 s 18 min 1025 years
n = 50 < 1 s < 1 s < 1 s < 1 s 11 min 36 years tl
n = 100 < 1 s < 1 s < 1 s 1s 12,9 years 1017 years tl
n = 1000 < 1 s < 1 s 1s 18 min tl tl tl
n = 10000 < 1 s < 1 s 2 min 12 days tl tl tl
n = 100000 < 1 s 2 s 3 hours 32 years tl tl tl
n = 1000000 1s 20s 12 days 31,710 years tl tl tl

As one can see, an algorithm of exponential complexity is very rapidly useless,
and is hence not reasonable. The main subject of this chapter is to understand what
is called a reasonable algorithm in theoretical computer science, and to understand
the theory of NP-completeness that allows to discuss the frontier between reason-
able and non-reasonable algorithms.

179
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12.1 The notion of reasonable time

12.1.1 Convention

For several reasons, the following convention has been adopted in Computer Sci-
ence:

Definition 12.1 (Efficient algorithm) An algorithm is efficient if its time com-
plexity is polynomial, that is to say in O

(
nk

)
for some integer k.

This is a convention (and others could have been chosen1) that has been widely
been accepted since the 70’s.

Remark 12.1 One can argue that an algorithm of complexity O
(
n1794

)
is not

very reasonable. Yes, but one must indeed fix a convention, and this is indeed
considered as reasonable in theory of complexity.

Remark 12.2 Why don’t taking a linear time, or a quadratic time as the notion
of “reasonable”: because this is not working so well. See Remark 12.3 below.

12.1.2 First reason: To abstract from coding issues

One of the reasons for this convention is the following remark: Most of the computer
science objects can be represented in various manners, but transforming one rep-
resentation into the other is doable in a time that remains polynomial in the size of
the encoding.

The class of polynomial being stable by composition, this implies that an algo-
rithm that is polynomial with respect to a given representation can be transformed
into a polynomial algorithm with respect to another representation.

One can then talk about efficient algorithm on these objects without having to
go to the details on how these objects are actually represented.

Example 12.1 A graph can be represented by a matrix, its adjacency!matrix: if
the graph has n vertices, one considers an array T of size n by n, whose element
T [i ][ j ] ∈ {0,1} values 1 if and only if there is an edge between the vertex i and the
vertex j .

One can also represent a graph by an adjacency!list: To represent a graph
with n vertices, one considers n lists. The list number i encodes the neighbours
of vertex number i .

One can go from one representation to the other in a time that is polynomial
in the size of each: This is left to the reader to get convinced of this fact in her or
his preferred programming language.

An efficient algorithm for one of the representation can always be transformed
into an efficient algorithm for the other representation: One just needs to start

1And actually, there were others previously.
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by possibly converting the representation to the representation on which the al-
gorithm works.

Furthermore, for the same reasons, as all of these graph representations remain
polynomial in n, by using the fact that a graph with n vertices has at most n2 vertices,
an algorithm polynomial in n is nothing but an efficient algorithm on graphs, that is
to say on any of the previous representations, or any usual representations of graphs.

12.1.3 Second reason: To abstract from the computational model

Another deep reason is the following: Let’s come back to Chapter 7. We have proved
that all computational models considered in this latter chapter can simulate one the
other: RAM machines, Turing machines, 2 stacks machines, counters machines.

If we put aside the counters machines whose simulation is particularly ineffi-
cient, and whose interest is perhaps mainly only theoretical, we can observe that
a number t of instructions for one model can be simulated using a number poly-
nomial in t of instructions for the other. The class of polynomial being stable by
composition, this implies that, possibly by simulating one model by the other, an
algorithm that is polynomial in one model of computation can be transformed into
a polynomial algorithm for any of the other models of computation.

We can then talk about efficient algorithms on an object without having to pre-
cise if the program is considered in one model of computation or the other2

In particular the notion of efficient algorithm is independent of the chosen pro-
gramming language: An efficient algorithm in CAML is an efficient algorithm in
JAVA, or an efficient algorithm in C.

Remark 12.3 We come back to Remark 12.2. Why don’t taking a linear time, or a
quadratic time as the notion of “reasonable”: In particular, because these notions
of linear and quadratic time would not satisfy the above property. Indeed, the
notion of linear time or of quadratic time is depending on the chosen model of
computation, contrary to the notion of polynomial time computability, and/or
are not closed by so nice closure properties.

For example, for linear time, a time T for a Turing machine with two tapes is
not clearly simulated in a time linear in T (This is O

(
T 2

)
, that is quadratic with

the obvious technique detailed in previous chapters, hence not linear. Notice that
if this is possible to prove that O

(
T log(T )

)
is possible if using a smart divide and

conquer technique).
For example, for quadratic time: As (T 2)2 = T 4, quadratic time is not closed

by composition, hence composing a quadratic time “reasonable” algorithm with
a quadratic time “reasonable” algorithm would not be “reasonable”.

2Most purist will observe a problem with the RAM model of Chapter 7: One must take into account in
the complexity measure the size of the integers involved in the executed elementary operations and not
only the number of instructions. But this is only details, and what is written above remains totally true,
is one forbids to RAM machines to manipulate integers of arbitrary size. Notice that this would anyway
not be reasonable with respect to the processors that they intend to model that work in practise on words
with a finite number of bits (typically 32 or 64 bits for example).
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Since the notion of efficiency is not depending of the model, one will use the
Turing machine model in all what follows: When w is a word, remember that we
write length(w) for its length.

Definition 12.2 (TIME(t(n))) Let t : N→ N be a function. We define the class
TIME(t(n)) as the class of problems (languages) decided by a Turing machine in
time O (t (n)), where n = length(w) is the size of the input.

If one prefers, L ∈ TIME(t(n)) if there exists a Turing machine M such that:

• M decides L: for any word w , M accepts w if and only if w ∈ L, and M rejects
w if and only if w ̸∈ L;

• M takes a time bounded by O (t (n)):

– if one prefers: There are integers n0,c, and k such that for every word
w , if w is of sufficiently big size, that is to say if length(w) ≥ n0, then
M accepts or rejects using at most c ∗ t (n) steps, where n = length(w)
denotes the length of w .

Remember that we focus in this chapter and in the following (and more generally
in complexity theory) uniquely on decidable problems.

12.1.4 Class P

The class of problems which admit a reasonable algorithm corresponds then to the
following class:

Definition 12.3 (Class P) The class P is the class of problems (languages) de-
fined by:

P = ⋃
k∈N

TIME(nk) .

In other words P is exactly the class of problems that admit a polynomial algo-
rithm.

Here a several examples of problems in P.

Example 12.2 (Testing the colouring of a graph)

Input: A graph G = (V ,E), a finite set C of colours, and colour c(v) ∈ C for every
vertex v ∈V .

Answer: Decide if G is coloured with these colours: that is to say if there are no edge
of G with two extremities of the same colour.

This problem is in class P. Indeed, it is sufficient to go through the edges of the
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graph and to test for each of these edges if the colour of its two extremities are the
same.

Example 12.3 (Evaluation in propositionnal calculus)

Input: A formula F (x1, x2, · · · , xn) of propositional calculus, some values x1, · · · , xn ∈
{0,1} for each of the variables of the formula.

Answer: Decide whether the formula F evaluates to true for this value of these vari-
ables.

This problem is in class P. Indeed, given some formula of propositional calcu-
lus F (x1, · · · , xn) and some values x1, x2, · · · , xn ∈ {0,1}, it is easy to compute the
truth value of F (x1, · · · , xn). This is done in a time that one can easily check to be
polynomial in the size of the input: Basically, one evaluates the formula induc-
tively by propagating the truth value of variables and constants through logical
operators (and, or, and negations) of the formula.

Many other problems are in P.

12.2 Comparing problems

12.2.1 Motivation

It turns out however that there is a whole class of problems for which we did not
succeed up to today to prove formally that this is not possible.

This is historically what leaded to consider the class of problems that we call NP,
that we will consider in the following sections.

Some example of problems in this class are the following:

Example 12.4 (k-COLORABILITY)

Input: A graph G = (V ,E) and some integer k.

Answer: Decide if there exists a colouring of the graph using at most k colours: that
is to say decide if there exists a way to colour the vertices of G with at most
k colours to obtain a colouring of G.

Example 12.5 (SAT, Satisfaction in proposititionnal calculus)

Input: A formula F (x1, · · · , xn) of propositional calculus.

Answer: Decide if F is satisfiable: that is to say if there exists x1, · · · , xn ∈ {0,1}n such
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that F evaluates to true with this value of the variables x1, · · · , xn .

Example 12.6 (HAMILTONIAN CIRCUIT)

Input: A graph G = (V ,E) (non-oriented).

Answer: Decide if there exists a Hamiltonian circuit in G, that is to say decide if
there exists a path that goes through, once and exactly once, every vertex
and that comes back to its starting point.

For the three problems, some exponential time algorithm is known: test all the
ways to colour the vertices for the first, or all the values of {0,1}n for the second, or all
the paths for the last one. For the three problems, one does not know any efficient
algorithm, and one has not succeeded to prove that there is none at this date.

As we will see, one can however prove that these three problems are equivalent
with respect to their level of difficulty, and this will lead to consider the notion of
reduction, that is to say to compare the hardness of problems.

Before, let’s precise a few things.

12.2.2 Remarks

In this chapter and in the next chapter, we will essentially only talk about decision
problems, that is to say about problems whose answer is either “true” or “false”: See
Definition 9.2.

Example 12.7 “Sort n numbers” is not a decision problem: The output is a list of
sorted numbers.

Example 12.8 “Given a graph G = (V ,E), determine the number of colours to
colour G” is not a decision problem, as the output is some integer. One can
however formulate this problem as a decision problem, of type “Given a graph
G = (V ,E), and some integer k, determine if the graph G admits a colouring with
less than k colours”: This is the problem k-COLORABILITY.

Before talking about reductions, we must talk about functions computable in
polynomial time: This is the expected notion, even if we are force to provide the
details as we have not done it yet.

Definition 12.4 (Function computable in polynomial time) LetΣ andΣ′ be two
alphabets. A (total) function f : Σ∗ → Σ′∗ is computable!in polynomial time if
there exists a Turing machine Turing A, working over alphabet Σ∪Σ′, and some
integer k, such that for every word w, A with input w terminates in time O

(
nk

)
with, at the moment it stops, f (w) written on its tape, where n = length(w).

The following result is easy to establish:
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T RU E

F ALSE

T RU E

F ALSE

Problem A Problem B

Figure 12.1: The reductions transform positive instances to positive instances and
negative instances to negative instances.

Instance of

problem A
f Instance of

problem B
Algorithm yes

no

Figure 12.2: Reduction from problem A to problem B . If one can solve problem B in
polynomial time, then one can solve problem A in polynomial time. The problem A
is hence at least as easy as problem B , denoted by A ≤ B .

Proposition 12.1 (Stability by composition) The composition of two functions
computable in polynomial time is computable in polynomial time.

12.2.3 The notion of reduction

This permits to introduce the notion of reduction between problems (similar to the
one of chapter 9, except that we are talking about computability in polynomial time
instead of just computability): the idea is that if A reduces to B , then problem A is
at least as easy as problem B , or if one prefers, the problem B is at least as hard as
problem A: See Figure 12.2 and Figure 12.1.

Definition 12.5 (Reduction) Let A and B two problems of respective alphabets
ΣA and ΣB . A reduction from A to B is a function f : Σ∗

A → Σ∗
B computable in

polynomial time such that w ∈ A if and only if f (w) ∈ B. We write A≤B when A
reduces to B.

This behaves as expected: A problem is at least as easy (and hard) as itself, an the
relation “being at least as easy as” is transitive. In other words:
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Theorem 12.1 ≤ is a preorder:

1. L≤L;

2. L1 ≤ L2, L2 ≤ L3 implies L1 ≤ L3.

Proof: Consider the identity function as function f for the first point.
For the second point, suppose L1 ≤ L2 via the reduction f , and L2 ≤ L3 via the

reduction g . We have x ∈ L1 if and only if g ( f (x)) ∈ L2. It is then sufficient to see that
g ◦ f , provides the reduction, and is computable in polynomial time, since it is the
composition of two functions computable in polynomial time. □

Remark 12.4 It is not an order, since L1 ≤ L2, L2 ≤ L1 does not imply L1 = L2.

It is then natural to introduce:

Definition 12.6 Two problems L1 and L2 are equivalent, denoted by L1≡L2, if
L1 ≤ L2 and if L2 ≤ L1.

We have then L1 ≤ L2, L2 ≤ L1 implies L1 ≡ L2.

12.2.4 Applications to comparison of hardness

Intuitively, if a problem is at least as easy as a polynomial problem, then it is poly-
nomial. Formally:

Proposition 12.2 (Reduction) If A≤B, and if B ∈ P then A ∈ P.

Proof: Let f be a reduction from A to B . A is decided by the Turing machine
that, on some input w , compute f (w) and then simulates the Turing machine that
decides B on input f (w). Since we have w ∈ A and only if f (w) ∈ B , the algorithm is
correct, and it works in polynomial time. □

By considering the contrapositive of previous proposition, we obtain the follow-
ing formulation that says that if a problem has no polynomial algorithm, and it is at
least as easy as another one, then this latter has also no polynomial algorithm.

Proposition 12.3 (Reduction) If A≤B, and if A ̸∈ P then B ̸∈ P.

Example 12.9 We will see that the problems k-COLORABILITY, SAT and HAMILTONIAN CIRCUIT
are equivalent (and are equivalent to all the NP-complete problems). There is
hence an efficient algorithm for one of them if and only if there is one for the
other(s).
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12.2.5 Hardest problems

If one considers a class of problems, we can introduce the notion of hardest problem
for the class, i.e. maximum for ≤. This is the notion of completeness:

Definition 12.7 (C -completness) Let C be class of decision problems.
A problem A is said to be C -complete, if

1. it is in class C ;

2. every problem B of C is such that B ≤ A.

We say that a problem A if C -hard it it satisfies condition 2. of Definition 12.7. A
problem A is hence C -completeness if it is C -hard and in class C .

A C -complete problem is hence the most difficult, or one of the most difficult
problems of the class C . Clearly, if there are several, they are all equivalent:

Corollary 12.1 Let C be a class of languages. All the C -complete problems are
equivalent.

Proof: Let A and B two C -complete problems. Apply condition 2 of Definition 12.7
to A with respect to B ∈C , and to B with respect to A ∈C . □

12.3 The class NP

12.3.1 The notion of verifier

The problems k-COLORABILITY, SAT and HAMILTONIAN CIRCUIT mentioned pre-
viously have a common point: While it is not clear that they admit a polynomial
algorithm, it is very clear that they admit a polynomial verifier.

Definition 12.8 (Verifier) A verifier for a problem A is an algorithm (i.e. Turing
machine) V such that

A = {w |V accepts 〈w,u〉 for some word u}.

The verifier is polynomial if algorithm V decides its answer in a time poly-
nomial in the length of w. One say that a language is polynomially verifiable if
it admits a polynomial verifier.

The word u is called a certificate (sometimes also a proof , or a witness) for w . In
other words, a verifier is using one more information, namely u, to check that w is
in A.

Remark 12.5 Observe that one can always restrict to certificates of length poly-
nomial in the length of w, since in a time polynomial in the length of w the
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algorithm V will not read more than a polynomial number of symbols of the
certificate.

Example 12.10 A certificate for the problem k-COLORABILITY is given by some
colours for all the vertices.

We will not always provide so many details, but here is the justification: Indeed, a
graph G is in k-COLORABILITY is and only if one can find some word u that encodes
the colours for all the vertices and all these colours provide a correct colouring: The
algorithm V , i.e. the verifier, given 〈G ,u〉, is only checking that the colouring corre-
sponding to u is correct. This can be done in a time polynomial in the size of the
graph: See discussion of Example 12.2.

Example 12.11 A certificate for the problem SAT is constituted of a value x1, . . . ,
xn ∈ {0,1} for each of the variables of the formula F : The verifier needs only to
check that these values satisfy the formula F . This can be done in a time polyno-
mial in the size of the formula: See example 12.3.

Example 12.12 A certificate for the problem HAMILTONIAN CIRCUIT is consti-
tuted by a circuit. The verifier needs only to check that the circuit is Hamiltonian.
This can be done in a time polynomial in the size of the graph.

This leads to the following definition:

Definition 12.9 NP is the class of problems (languages) that have a polynomial
verifier.

This class is important that it turns out that it contains an incredible number of
problems of practical interest. It contains k-COLORABILITY, SAT and HAMILTONIAN CIRCUIT
but also many other problems: See for example all the examples of the next chapter.

By construction, we have (as the empty word is a valid certificate for any problem
of P):

Proposition 12.4 P ⊆ NP.

12.3.2 The question P = NP?

Clearly, we have either P = NP or P⊊NP: See Figure 12.3.
The question to know if these two classes are equal or distinct is an impressive

challenge. First because it is one of the unsolved questions among the most (maybe
the) famous of Theoretical Computer Science that have been challenging research
for the last 50 years: It has been selected in the list of the most important questions
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P

NP

P = NP

Figure 12.3: One of the two possibilities is correct.

for Mathematics and Computer Science in 2000. The Clay Mathematics Institute
offers 1 000 000 dollars to the person that will determine the answer to this question.

But mainly, if P = NP, then all the problems polynomially verifiable would be de-
cidable in polynomial time. Most of the people think that the two classes are distinct
since there are a very huge number of problems for which nobody have succeeded
to provide a polynomial algorithm for more than 40 years.

It has also an impressive economical impact, since many systems, including to-
day’s cryptographic systems are based on the hypothesis that these two classes are
distinct. If it is not the case, many considerations about these systems would col-
lapse, and numerous cryptographic techniques would have been to be revisited.

12.3.3 Non-deterministic polynomial time

Let’s first do a small parenthesis on terminology: The “N” in NP comes from non
deterministic (and not from not as many often believe), because of the following
result:

Theorem 12.2 A problem is in NP if and only if it is decided by a non-deterministic
Turing machine in polynomial time.

Remember that we have introduced the non-deterministic Turing machines in
Chapter 7. We say that a language L ⊂ Σ∗ is decided by the non-deterministic ma-
chine M in polynomial time if M decides L and M takes a time bounded by O (t (n)):
There are integers n0,c, and k such that for all words w of sufficiently big size, i.e.
n = length(w) ≥ n0, M admits a computations that accepts in less than c ∗nk steps,
and for w ̸∈ L, all the computations of M lead to a rejecting configuration in less than
c ∗nk steps.

Proof: Consider a problem A of NP. Let V be the associated verifier, that runs
in polynomial time p(n). We build a non-deterministic Turing machine M , that, on
some word w , will produce in a non-deterministic way a word u of length p(n), and
then will simulate V on 〈w,u〉: If V accepts, then M accepts. If V rejects, then M
rejects. The machine M decides A.

Conversely, let A be a problem decided by a non-deterministic Turing machine
M in polynomial time p(n). As in the proof of Proposition 7.3 in Chapter 9, we can
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state that the non-deterministic degree of the machine is bounded by some integer
r , and that the sequence of the non-deterministic choices made by the machine M
up to time t can be encoded by a sequence of length t of integers between 1 and (at
most) r .

Consequently, a sequence of integers of length p(n) between 1 and r is a valid
certificate for a word w : Given w and a word u encoding such a sequence, a ver-
ifier V can easily check in polynomial time if the machine M accepts w with this
sequence of non-deterministic choices. □

More generally, we define:

Definition 12.10 (NTIME(t(n))) Let t :N→N be a function. We define the class
NTIME(t(n)) as the class of problems (languages) decided by a non-deterministic
Turing machine in time O (t (n)), where n is the size of the input.

Corollary 12.2
NP = ⋃

k∈N
NTIME(nk) .

12.3.4 NP-completeness

It turns out that the class NP contains a very huge number of complete problems.
The following chapter presents a whole list of such problems.

The difficulty is to succeed to produce a first such problem. This is the object of
the Cook and Levin’s theorem.

Theorem 12.3 (Cook-Levin) The problem SAT is NP-complete.

We will prove this theorem in the next section.
Let’s first start by reformulating what this means.

Corollary 12.3 P = NP if and only if SAT ∈ P.

Proof: Since SAT is in NP, if P = NP, then SAT ∈ P.
Conversely, since SAT is NP-complete, for any problem B ∈ NP, B ≤ SAT and so

B ∈ P if SAT ∈ P by Proposition 12.2. □
What we have just done is true for any NP-complete problem.

Theorem 12.4 Let A be a NP-complete problem.
P = NP if and only if A ∈ P.

Proof: Since A is complete it is in NP, and hence if P = NP, then A ∈ P. Con-
versely, since A is NP-hard, for any problem B ∈ NP, B ≤ A and hence B ∈ P if A ∈ P
by Proposition 12.2. □
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Remark 12.6 We hence see the importance of producing NP-complete problems
for proving P ̸= NP: Producing a problem for which one could succeed to prove
that there is no polynomial time algorithm. At this day, none of the thousand of
known NP-complete problems have provided a way to prove that P ̸= NP.

Remark 12.7 Remember that all the complete problems are equivalent by Corol-
lary 12.1.

12.3.5 A method to prove NP-completeness

The NP-completeness of a problem is established in the quasi-totality of the cases
as follows:

In order to prove the NP-completeness of a problem A, it is sufficient:

1. to prove that it is in NP;

2. and to prove that B ≤ A for some problem B that is known to be NP-
complete.

Indeed, the point 1. guarantees that B ∈ NP, and point 2. guarantees that for any
problem C ∈ NP we have C ≤ A: Indeed by the NP-completeness of B we have C ≤ B ,
and since B ≤ A, we obtain C ≤ A.

Remark 12.8 Be careful, the NP-completeness of a problem A is obtained by
proving that is is at least as hard as another NP-complete, and not the contrary.
This is a frequent error.

The following chapter is devoted to many applications of this strategy on various
problems.

12.4 Two examples of proofs of NP-completeness

We apply the above strategy to prove the that 3-SAT is NP-complete.

12.4.1 Proof of the NP-completeness of 3-SAT

Definition 12.11 (3-SAT)

Input: A set of variables {x1, · · · , xn} and a formula F =C1 ∧C2 · · ·∧Cℓ with Ci =
yi ,1 ∨ yi ,2 ∨ yi ,3, where for every i , j , yi , j is either xk , or ¬xk for one of the
xk .

Answer: Decide whether F is satisfiable, that is, decide if there exist x1, · · · , xn ∈
{0,1}n such that F evaluates to true with this value of its variables x1, · · · , xn .
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P problems

NP-complete problems

NP problems

Figure 12.4: Situation with hypothesis P ̸= NP.

Theorem 12.5 The problem 3-SAT is NP-complete.

Proof: First note that 3-SAT is in NP. Indeed, given an assignment of the truth value
of the variables, it is easy to check in polynomial time that the formula is true with
these values of the variables.

We will reduce SAT to 3-SAT. Let F be a CNF-formula. Let C be a clause of F , say
C = x ∨ y ∨ z ∨u ∨ v ∨w ∨ t . We introduce new variables a,b,c,d associated to this
clause, and we replace C by the formula

(x ∨ y ∨a)∧ (¬a ∨ z ∨b)∧ (¬b ∨u ∨ c)∧ (¬c ∨ v ∨d)∧ (¬d ∨w ∨ t ).

It is easy to check that an assignment of x, y, z can be completed to an assign-
ment of a,b,c,d that satisfies this formula if and only if C is true. By applying this
construction to every clause of F , and by taking the conjunction of the formulas
constructed in that way, we obtain a CNF-formula F ′ in which every clause has at
most 3 literals whose satisfiability is equivalent to that of F .

The computation time reduces to writing the clauses, whose length is polyno-
mial. Consequently, the whole reduction can be computed in polynomial time, and
we proved, starting from SAT that 3-SAT is NP-complete. □

12.4.2 Proof of the NP-completeness of 3-COLORABILITY

Remember that a colouring of a graph is an assignment of colours to vertices of the
graph such that no edge has its extremities of the same colour.

Definition 12.12 (3-COLORABILITY)

Input: An undirected graph G = (V ,E).
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Answer: Decide if there exists a colouring of the graph that uses at most 3 colours.

Theorem 12.6 The problem 3-COLORABILITY is NP-complete.

Proof: 3-COLORABILITY is in NP, since given a colour for each of the vertices, it
is easy to check in polynomial time if this is a (valid) colouring with at most 3 colours.

We reduce 3-SAT to 3-COLORABILITY. We hence suppose that a conjunction of
m clauses with 3 literals is given, over n variables, and we have to produce a graph
(with the expected properties to get a reduction). As in all reductions from 3-SAT, we
have to express two constraints: first, that a variable can only take either the value 0
or 1, and second, the evaluation rules of clauses.

We construct a graph with 3 + 2n + 5m vertices, the first three (called distin-
guished vertices in what follows) are denoted by T RU E , F ALSE , DON T K NOW .
These three vertices are linked two by two in a triangle Thus, in a colouring these
three vertices must all have different colours.

We associate a vertex to every variable and to the negation of every variable. To
make sure that a variable takes the value T RU E or F ALSE , for every variable xi ,
we add a triangle whose vertices are xi , ¬xi , and DON T K NOW . This makes sure
that in a colouring we must have colour (xi ) = colour (T RU E) and colour (¬xi ) =
colour (F ALSE), or colour (xi ) = colour (F ALSE) and colour (¬xi ) = colour (T RU E),
where of course, colour (v) denotes the colour of vertex v .

It remains to encode the evaluation rules of the clauses. To do so, we introduce
the following subgraph, for every clause x ∨ y ∨ z:

z 1

T RU E

0

2

4

3x

y

It can be checked that if this pattern (where the three distinguished vertices with
above mentioned triangles are implicit) is 3-colourable, then the vertices 0 and 1
are colour (F ALSE) and colour (DON T K NOW ). IF 1 is colour (F ALSE) since a
vertex corresponding to a variable must be T RU E or F ALSE , we have colour (z) =
colour (T RU E). If 0 is colour (F ALSE), then 2 cannot be colour (F ALSE), so 3 or 4
is, and the corresponding variable is coloured colour (T RU E).

Conversely, if one of the variables is true, one can then easily construct a 3-
colouration of the pattern.

Consider then the graph formed of the three distinguished vertices, of the trian-
gles formed on these variables, and the given patterns. If this graph is 3-colourable,
then in particular every subgraph is colourable. The triangles of variables are in par-
ticular colourable. From a 3-colouring of the graph, one constructs a truth assign-
ment by setting to 1 all variables coloured with colour (T RU E). This assignment is
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coherent (a variable and its negation have opposite values) and at least one literal for
each clause is set to 1, according to the properties of the pattern above. Conversely,
given an assignment of truth values, it is easy to deduce a 3-colouring of the graph.

The existence of a 3-colouring of the graph is hence equivalent to the satisfiabil-
ity of the initial formula.

The reduction is clearly polynomial; hence, we have shown that 3-SAT reduces
to 3-COLORABILITY. The latter is hence NP-complete. □

12.4.3 Proof of the Cook-Levin theorem

We cannot use the above method to prove the NP-completeness of SAT, as we do not
now at this moment any NP-complete problem to reduce from.

We need to do the proof in another way, by coming back to the definition of NP-
completeness: one must first prove that SAT is in NP, and second that any other
problem A from NP satisfies A ≤ SAT.

The fact that SAT is in NP has already been established, see example 12.11.
Consider a problem A of NP, and an associated verifier V . The idea (which has

similarities with the constructions of Chapter 10) is given a word w , to construct a
formula of propositional calculus γ = γ(u) which encodes the existence of an ac-
cepting computation of V on 〈w,u〉 for a certificate u.

We will build a series of formulas whose culminating point will be formula γ =
γ(u) that will code the existence of a sequence of configurations C0,C1, · · · ,Ct of M
such that:

• C0 is the initial configuration of V on 〈w,u〉;
• Ci+1 is the successor configuration of Ci , according to the transition function
δ of Turing machine V , for i < t ;

• Ct is an accepting configuration.

In other words, the existence of a valid space-time diagram corresponding to a
computation of V on 〈w,u〉.

By observing that the obtained propositional formula γ remains of size polyno-
mial in the size of w , and can indeed be obtained by a polynomial algorithm from w ,
we will have shown the theorem: Indeed, we will get w ∈ L if and only if there exists
u that satisfies γ(u), that is to say A ≤ SAT via the function f that to w associates
γ(u).

It only remains to provide the tedious details of the construction of formula γ(u).
By hypothesis, V runs in time p(n) polynomial in the size n of w . In that time, V
cannot move its head more than p(n) cells to the left or p(n) cells to the right. We
can hence restrict to a sub-rectangle of size (2∗p(n)+1)×p(n) from the space-time
diagram of the computation of V on 〈w,u〉, see Figure 12.5.

The cells of array T [i , j ] corresponding to the space-time diagram are elements
of finite set C = Γ∪Q. For every 1 ≤ i ≤ p(n) and 1 ≤ j ≤ 2∗p(n)+1 and for every
s ∈ C , we define a propositional variable xi , j ,s . If xi , j ,s has the value 1, that means
that the cell T [i , j ] contains s.
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B B B B B B q0 e1 e2 . . . em B B B B B B B B B B Initial configuration

Second configuration

Third configuration

p(n)th configuration

window

2∗p(n)+1

p(n)

Figure 12.5: A (2p(n)+1)×p(n) array that codes the space-time diagram of the com-
putation of V on 〈w,u〉.
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The formula Γ is the conjunction of 4 formulas CELL∧START∧MOVE∧HALT.
The formula CELL is there to guarantee that there is exactly one symbol in every

cell.

CELL = ∧
1≤i≤p(n),1≤ j≤2p(n)+1

[( ∨
s∈C

xi , j ,s

)
∧

( ∧
s,t∈C ,s ̸=t

(¬xi , j ,s ∨¬xi , j ,t )

)]
.

The symbols
∧

and
∨

denote the iteration of corresponding symbols ∧ and ∨.
For example,

∨
s∈C xi , j ,s is a shortcut for formula xi , j ,s1 ∨·· ·∨xi , j ,sl if C = {s1, · · · , sl }.

If we write the word e1e2 · · ·em for the word 〈w,u〉, the formula START guarantees
that the first line corresponds to the initial configuration of V on 〈w,u〉.

START = x1,1,B ∨x1,2,B ∨·· ·∨x1,p(n)+1,q0 ∨x1,p(n)+2,e1 ∨·· ·∨x1,p(n)+m+1,em

∨x1,p(n)+m+2,B ∨·· ·∨x1,2p(n)+1,B.

The formula HALT guarantees that one line corresponds to an accepting config-
uration.

HALT = ∨
1≤i≤p(n),1≤ j≤2p(n)+1

xi , j ,qa .

Finally, the formula MOVE expresses that all 3× 2 sub-rectangles from array T
are legal windows: see the notion of legal window from Chapter 7.

MOVE = ∧
1≤i≤p(n),1≤ j≤2p(n)+1

LEGALi , j ,

where LEGALi , j is a positional formula that expresses that the 3×2 subformula
at position i , j is a legal window:

LEGALi , j =
∧

(a,b,c,d ,e, f )∈WINDOW
(xi , j−1,a∧xi , j ,b∧xi , j+1,c∧xi+1, j−1,d∧xi+1, j ,e∧xi , j+1, f ),

where WINDOW is the set of 6-tuple (a,b,c,d ,e, f ) such that if the three elements of
Σ represented respectively by a,b and c appear consecutively in a configuration Ci ,
and if d ,e, f appear consecutively at the same position Ci+1, then this is coherent
with transition function δ of Turing machine M .

This completes the proof, noting that each of the formulas can be written easily
(and hence can be produced in polynomial time from w) and that they remain of
size polynomial in the size of w .

12.5 Some other results from complexity theory

In this section, we give several additional important results on time complexity.
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12.5.1 Decision vs. Construction

Let us start by a remark about the hypothesis that we did on the choice of restricting
to decision problems

We have talked up to now only about decision problems, that is problems whose
answer is either true or false (for example: “given a formula F decide if the formula
F is satisfiable”) in contrast to problems that consist in producing an object with a
property (for example: given a formula F , produce an assignment of the variables
that makes it true if there exists one).

Clearly, producing a solution is at least as hard as deciding if there exists one,
and hence if P ̸= NP, none of the two problems has a solution in polynomial time,
and the same holds for any NP-complete problem.

However, if P = NP, it turns out that we can also produce a solution:

Theorem 12.7 Assume that P = NP. Let L be a problem of NP and V the as-
sociated verifier. One can construct a Turing machine that on any input w ∈ L
produces in polynomial time a certificate u for w for verifier V .

Proof: Let us start by proving the theorem for L being the satisfaction problem
of propositional formula (so the problem SAT). Assume P = NP. Then one can then
test if a propositional formula F with n variables is satisfiable or not in polynomial
time. If it is satisfiable, then one can fix its first variable to 0 and test if the obtained
formula F0 is satisfiable. If it is, then we write 0 and then restart recursively with this
formula F0 with n − 1 variables. Otherwise, necessarily any certificate must have
its first variable set to 1. Write 1 and start recursively with formula F1 whose first
variable is fixed to 1, and that has n −1 variables. Since it is easy to check if a for-
mula without any variable is satisfiable, by this method, a correct certificate will be
produced.

Now if L is an arbitrary language of NP, we can use the fact that the reduction
produced by the proof of the Cook-Levin theorem is a Levin reduction: Not only
do we have w ∈ L if and only if f (w) is a satisfiable formula, but one can find a
certificate for w from a certificate of the satisfiability of formula f (w). One can then
use the previous algorithm to find the certificate for L. □

What we used in the above proof is the fact that the satisfiability problem of a
CNF-formula is self-reducible to instances of lower size.

12.5.2 Hierarchy theorems

We say that a function f (n) ≥ n log(n) is time constructible, if the function that sends
1n to the binary representation of 1 f (n) is computable in time O

(
f (n)

)
.

Most of the usual functions are time constructible, and in practice this is not
really a restriction.

Remark 12.9 For example, n
p

n is time constructible: On input 1n , one starts
by counting the number of 1 in binary. One can use for that a counter, which re-
mains of size log(n), that one increments: This is hence done in time O

(
n log(n)

)
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since one uses at most O
(
log(n)

)
steps for every letter of the input word. One

can then compute ⌊n
p

n⌋ in binary from the representation of n. Any standard
method for doing so runs in time O

(
n log(n)

)
, since the size of the involved num-

bers is O
(
log(n)

)
.

Theorem 12.8 (Time Hierarchy theorem) For every time constructible function
f :N→N, there exists a language L that is decidable in time O

(
f (n)

)
but not in

time o( f (n)/ log f (n)).

Proof: The proof is a generalization of the idea of the proof of Theorem 14.11 of
next chapter: We invite our reader to wait and start by this latter proof.

We prove a version weaker than the statement above. Let f : N→ N be a time
constructible function.

One considers the (very artificial) language L that is decided by the following
Turing machine B :

• on an input w of size n, B computes f (n) and memorize 〈 f (n)〉 the binary
encoding of f (n) in a binary counter c;

• If w is not of the form 〈A〉10∗, for some Turing machine A, then Turing ma-
chine B rejects.

• Otherwise, B simulates A on the word w for f (n) steps to determine whether
A accepts in a time less than f (n):

– If A accepts in this time, then B rejects;

– otherwise B accepts.

In other words, B simulates A on w , step by step, and decrements the counter c
at each step. If this counter reaches 0 or if A rejects, then B accepts. Otherwise, B
rejects.

By the existence of a universal Turing machine, there exist integers k and d such
that L is decided in time d × f (n)k .

Suppose that L is decided by a Turing machine A in time g (n) with g (n)k =
o( f (n)). There must exists an integer n0 such that for n ≥ n0, we have d × g (n)k <
f (n).

As a consequence, the simulation of A by B will indeed be complete on some
input of size n0 or more.

Consider what happens when B is run on the input 〈A〉10n0 . Since this input is of
size greater than n0, B answers the opposite of Turing machine A on the same input.
Hence B and A are not deciding the same language, and hence Turing machine A is
not deciding L, which leads to a contradiction.

As a consequence L is not decidable in time g (n) for any function g (n) with
g (n)k = o( f (n)).

The theorem is a generalization of this idea. The (inverse) factor log( f (n)) comes
from the construction of a universal Turing machine that is more efficient than the
one considered in this document, introducing only a logarithmic time slow-down.
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□
Formulating the above theorem differently, we get:

Theorem 12.9 (Time Hiearchy theorem) Let f , f ′ :N→N be time constructible
functions such that f (n) log( f (n)) = o( f ′(n)). Then the inclusion TIME(f(n)) ⊊
TIME(f’(n)) is strict.

We obtain for example:

Corollary 12.4 TIME(n2)⊊TIME(nlogn)⊊TIME(2n).

We define:

Definition 12.13 Let
EXPTIME = ⋃

c∈N
TIME(2nc

) .

We obtain:

Corollary 12.5 P⊊ EXPTIME.

Proof: Any polynomial becomes eventually negligible smaller than 2n , and hence
P is a subset of TIME(2n). Now, TIME(2n), that contains all P is strict subset of, for
example, TIME(2n3

), that is included in EXPTIME. □

12.5.3 EXPTIME and NEXPTIME

Consider
EXPTIME = ⋃

c≥1
TIME(2nc

)

and
NEXPTIME = ⋃

c≥1
NTIME(2nc

) .

We can prove the following result (and this is not hard):

Theorem 12.10 If EXPTIME ̸= NEXPTIME then P ̸= NP.

12.6 One the meaning of the P = N P question

We make a digression about the meaning of the P vs. NP question in relation to proof
theory and other chapters of this document.

One can see NP as the class of languages such that testing the containment to it
is equivalent to determining if there is a short (polynomial size) certificate. This can
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be related to the existence of a proof in mathematics. Indeed, in its own principle,
mathematical deduction consists in proving theorems starting from axioms.

One expects that the validity of a proof is easy to check: one only needs to check
that each line of the proof is a consequence of the previous lines, in the proof system.
Actually, in most of the axiomatic proof systems (for example in all the proof systems
we have seen) this verification can be done in a time that remains polynomial in the
length of the proof.

Consequently, the following decision problem is NP for all the particular ax-
iomatic usual proof systems A , and in particular for the one A that we have seen
for the predicate calculus.

THEOREMS = {〈φ,1n〉|φ has a proof of length ≤ n

in system A }.

We leave to our reader the following exercise:

Exercise 12.1 The set theory of Zermelo-Fraenkel is one of the axiomatic
systems that allows axiomatizing mathematics with a finite description.
(Even without knowing all the details of the set theory of Zermelo-Fraenkel)
argue at a high level that the problem THEOREMS is NP-complete for the
set theory of Zermelo-Fraenkel.

Hint: the satisfiability of a Boolean circuit is particular statement.

In other words, in virtue of Theorem 12.7, the P = NP question is the one (that
has been asked for the first time by Kurt Gödel) to know whether there exists a Turing
machine that is able to produce a mathematical proof of all statements φ in a time
polynomial in the length of its proof.

Does this seem reasonable?

What is the meaning of the NP = coNP question? Remember that coNP is the class
of languages whose complement is in NP. The question NP = coNP, is related to the
existence of short proofs (of certificates) for statements that do not seem to have
one: for example, it is easy to prove that propositional formula is satisfiable (one
produces a valuation of its inputs, that one can encode in a proof that says that by
propagation of the inputs towards the outputs, that the circuit outputs 1). On the
other hand, in the general case, it is not clear how to write a short proof that a given
propositional formula is not satisfiable. If NP = coNP, there must always exist one:
The question is related to the existence of way proving the non-satisfiability of a
propositional formula different from usual methods.

One can formulate equivalent statements for all the mentioned NP-complete
problems.

12.7 Exercises
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Exercise 12.2 Prove that class P is closed under union, concatenation and
complement.

Exercise 12.3 Prove that class NP is closed under union and concatenation.

Exercise 12.4 (solution on page 238) Prove that if NP is different from its
complement then P ̸= NP.

Exercise 12.5 Prove that if P = NP then all languages A ∈ P except for A =;
and A =Σ∗ are NP-complete.

12.8 Bibliographic notes

Suggested readings To go further with the notions of this chapter, we suggest to
read the books [Sipser, 1997], [Papadimitriou, 1994] [Lassaigne & de Rougemont, 2004].

A reference book that contains the last results of the domain is [Arora & Barak, 2009].

Bibliography This chapter contains some standard results in complexity. We es-
sentially used their presentation in [Sipser, 1997], [Poizat, 1995], [Papadimitriou, 1994].
The last part “discussion” is taken from [Arora & Barak, 2009].

A clique of a graph G = (V ,E) is a subset V ′ ⊂ V such that any pair of vertices of
V ′ are linked by some edge of G .

Theorem 12.11 Given a graph G, and some integer k, the problem to decide
whether it admits a clique of size ≥ k is NP-complete.

A covering subset of a graph G = (V ,E) is a subset V ′ ⊂ V such that any pair of
edges of E has at least one of its extremity in V ′.

Theorem 12.12 Given a graph G, and some integer k, the problem to know
whether it admits a covering subset of size ≤ k is NP-complete.

An Hamiltonian path of a graph G is a path that goes once and only once through
every vertex of G . The problem of Hamiltonian path is to determine if a graph has
some Hamiltonian path.

Theorem 12.13 The Hamiltonian problem is NP-complete.

The subset sum problem consists, given a finite set S of integers and some inte-
ger s, determining whether there exists a subset X ⊂ S such that

∑
i∈X i = s.
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Theorem 12.14 The subset sum problem is NP-complete.



Chapter 13

Some NP-complete problems

Now that we have established the NP-completeness of a few problems, we are going
to prove that a very huge number of problems are NP-complete.

The book [Garey & Johnson, 1979] listed more than 300 NP-complete problems
in 1972. We do not have the ambition of presenting so many problems, but we will
list some famous NP-complete problems: Our main purpose is actually to provide
some examples of proofs of NP-completeness.

13.1 Some NP-complete problems

13.1.1 Around SAT

Recall the following theorem proved in previous chapter.

Definition 13.1 (3-SAT)

Input: A set of variables {x1, · · · , xn} and a formula F =C1 ∧C2 · · ·∧Cℓ with Ci =
yi ,1 ∨ yi ,2 ∨ yi ,3, where for every i , j , yi , j is either xk , or ¬xk for one of the
xk .

Answer: Decide whether F is satisfiable: that is, decide if there exist x1, · · · , xn ∈
{0,1}n such that F evaluates to true with this value of its variables x1, · · · , xn .

Theorem 13.1 The problem 3-SAT is NP-complete.

Remark 13.1 The problem 2−SAT, where we would consider clauses with two
literals, is in P.

203
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Definition 13.2 (NAESAT)

Input: A set of variables {x1, · · · , xn} and a set of clauses yi ,1 ∨·· ·∨ yi ,ki , where for
all i , j , yi , j is either xk , or ¬xk for some of the xk .

Answer: Decide if there is some assignment of the variables xi ∈ {0,1} in such a way
that every clause contains at least one true literal and at least one false
literal (that is, for every i , there is a j and a k with yi , j = 1 and yi ,k = 0).

Theorem 13.2 The problem NAESAT is NP-complete.

Proof: The problem is in NP since, given some assignment of the variables, it
is easy to check in polynomial time that the property holds for these values of the
variables.

We will reduce SAT to NAESAT. Let F a formula of S AT on the variables {x1, · · · , xn}.
We add a unique distinct variable z and we construct the clauses for NAESAT by re-
placing each clause Ci = yi ,1 ∨·· ·∨ yi ,k of F by C ′

i = yi ,1 ∨·· ·∨ yi ,k ∨ z.
This transformation can be realized in polynomial time.
If the given instance of SAT is satisfiable, the same assignment of variables fixing

for z the value 0 is a valid assignment for NAESAT.
Conversely, suppose that the constructed instance of NAESAT is satisfiable. If

the truth value of z in the corresponding assignment is 0, then the values of the
variables xi in the assignment give some valid assignment for the original formula F
(for the instance of SAT). If, on the contrary z values 1, then change all the values of
all the variables in the assignment. The assignment remains valid for NAESAT since
at least one literal by clause in the initial assignment values 0, and hence values now
1, whereas z values 0. We have built an assignment in which z values 0, and by
previous case the initial instance of SAT is satisfiable.

We have indeed proved the equivalence between satisfiability of F and the cor-
responding instance of NAESAT. Hence NAESAT is NP-complete. □

By using the same reduction for instances 3SAT, we get that NAE4SAT is NP-
complete: NAE4SAT is NAESAT restricted to formulas with 4 literals in each clause.
We can actually prove, that this holds for the version with three literals.

Corollary 13.1 NAE3SAT is NP-complete.

Proof: We will reduce NAE4SAT to NAE3SAT. Let C = x ∨ y ∨ z ∨ t be a clause
with 4 literals. We introduce a new variable uC , and we construct the two clauses
C1 = x∨y∨¬uC and C2 = z∨t ∨uC . Doing so for all the clauses, we clearly construct
an instance F ′ of NAE3SAT in polynomial time.

Suppose that F ′ is some positive instance of NAE3SAT, and consider the assign-
ment of the corresponding truth value. If uC = 0, then x or y is 0, and z or t is 1, so
x ∨ y ∨z ∨ t has at least a literal 1 and at least one literal 0; Similarly, if uC = 1; So F is
a positive instance of NAE4SAT.

Conversely, if F is a positive instance of NAE4SAT, consider the corresponding
truth assignment. In x ∨ y ∨z ∨ t , if x and y are both set to 1, set uC to 1; otherwise if
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x and y are both set to 0, set uC to 0; otherwise, set uC to the suitable truth value for
the clause uC ∨ z ∨ t . That produces an assignment that proves that F ′ is a positive
instance of NAE3SAT.

Once again, NAE3SAT is in NP from definition, as a value for the variable is
clearly a certificate that can be checked in polynomial time. □

13.1.2 Around INDEPENDANT SET

Definition 13.3 (INDEPENDANT SET)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide whether there exists V ′ ⊂ V , with |V ′| = k, such that u, v ∈ V ′ ⇒
(u, v) ̸∈ E.

Theorem 13.3 The problem INDEPENDANT SET is NP-complete.

Remark 13.2 Such an independent set V ′ is sometimes also called a stable set
(or stable).

Proof: INDEPENDANT SET is indeed in NP, since giving V ′ provides a certificate
that can be easily checked in polynomial time.

We reduce the problem 3-SAT to INDEPENDANT SET, that is to say, given some
formula F of type 3-SAT, we construct in polynomial time a graph G in such a way
that the existence of a stable set in G is equivalent to the existence of a truth assign-
ment that satisfies F .

Let F =∧
1≤ j≤k (x1 j ∨ x2 j ∨ x3 j ). We construct a graph G with 3k vertices, one for

each occurrence of a literal in a clause.

• For every variable xi of 3-SAT, G has an edge between every vertex associated
to a literal xi and every vertex associated to a literal ¬xi (and so an indepen-
dent set of G corresponds to a truth assignment of a subset of variables);

• For every clause C , we associate a triangle: for example for a clause of F of
the form C = (x1 ∨¬x2 ∨ x3), then G has the edges (x1,¬x2), (¬x2, x3), (x3, x1)
(by doing, an independent set of G must contain at most one of the vertices
associated to clause C ).

Let k be the number of clauses in F . One proves that F is satisfiable if and only if
G has an independent set of size k.

Indeed, if F is satisfiable, consider an assignment of the variables that satisfies F .
For every clause C of F , select yC a literal of C that is set to true by the assignment:
that defines k vertices defining an independent set of G .

Conversely, if G has an independent set of size k, then it has necessarily a ver-
tex in every triangle. This vertex corresponds to a literal that makes the associated
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clause true, and this forms an assignment of the variables that is consistent by con-
struction of the edges.

The reduction is clearly polynomial. □
Two classical problems are related to INDEPENDANT SET.

Definition 13.4 (CLIQUE)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide if there exists V ′ ⊂V , with |V ′| = k, such that u, v ∈V ′ ⇒ (u, v) ∈ E.

Theorem 13.4 The problem CLIQUE is NP-complete.

Proof: The reduction from INDEPENDANT SET consists in going to the comple-
mentary on the edges. Indeed, it is sufficient to observe that a graph G = (V ,E) has
an independent set of size k if and only if complementary graph G = (V ,E) (where
E = {(u, v)|(u, v) ∉ E }) has a clique of size k. □

Definition 13.5 (VERTEX COVER)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide if there exists V ′ ⊂V , with |V ′| = k, such that every edge of G has at
least one of its extremity in V ′.

Theorem 13.5 The problem VERTEX COVER is NP-complete.

Proof: The reduction from INDEPENDANT SET consists in considering the com-
plementary on the vertices. □

Definition 13.6 (MAXIMAL CUT)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide if there exists a partition V =V1∪V2 such that the number of edges
between V1 and V2 is at least k.

Theorem 13.6 The problem MAXIMAL CUT is NP-complete.

Proof: We reduce NAE3SAT to MAXIMAL CUT. Suppose an instance of NAE3SAT
is given, in which we can suppose without loss of generality that every clause does
not contain simultaneously a variable and its complementary. Replacing u ∨ v by
((u ∨ v ∨ w)∧ (u ∨ v ∨¬w)) if needed, we can suppose that every clause contains
exactly 3 literals. Furthermore, if we have (u ∨ v ∨w) and (u ∨ v ∨ z), we can, by in-
troducing two variables t1 and t2 and by proceeding as we did to reduce NAE4SAT
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to NAE3SAT, rewrite these two clauses as (u ∨ t1 ∨ t2)∧ (v ∨w ∨¬t1)∧ (v ∨ z ∨¬t2).
In other words, we can suppose that two given clauses have at most one variable in
common.

We denote by x1, · · · , xn the variables of the formula F .
We will construct a graph G = (V ,E) in the following way: G has 2n vertices and

every variable u of F is corresponding to two vertices u and ¬u. G has an edge
between every couple of vertices (u, v) such that u and v appear in the same clause,
and an edge between the vertices u and ¬u for every variable u.

The reductions in the first paragraph of the proof permit to state that to every
clause corresponds a triangle and that two of these triangles have distinct edges.

If we denote by n the number of variables and by m the number of clauses, the
graph G has 2n vertices and 3m +n edges. It is easy to see that the number of edges
in a cut corresponding to a valid NAE3SAT assignment is 2m+n: The edge between
u and ¬u for every variable u, and two edges of the triangle uv w for every clause
u ∨ v ∨w .

Conversely, every cut of G has at most 2m +n edges, since a cut can not include
more than the number of edges for a given triangle associated to a clause. Conse-
quently, a cut of value 2m +n provides immediately a valid NAE3SAT assignment.

In other words, solving an instance of NAE3SAT is equivalent to solve MAXIMAL CUT
on (G ,2m +n).

The reduction is polynomial. Now MAXIMAL CUT is in NP since giving V1 is a
valid certificate that can be checked in polynomial time. □

13.1.3 Around HAMILTONIAN CIRCUIT

The problem HAMILTONIAN CIRCUIT is often at the source of the proof of NP-
completeness of properties related to paths in graphs.

Definition 13.7 (HAMILTONIAN CIRCUIT)

Input: An (undirected) graph G = (V ,E).

Answer: Decide if there exists a Hamiltonian circuit that is to say a path of G that
goes exactly once through every vertex and that comes back to its starting
point.

Theorem 13.7 The problem HAMILTONIAN CIRCUIT is NP-complete.

Proof: We will prove that fact by reducing VERTEX COVER to this problem.
The idea consists, starting from an instance of VERTEX COVER, in constructing

a graph in which every initial edge will be replaced by a “pattern” that admits exactly
two Hamiltonian paths, that is to say paths that visit exactly once every vertex. One
of this path will correspond to the case where the corresponding vertex belongs to
the cover, the other where it does not belong.

There will remain to tell how to glue all these patterns so that a global Hamil-
tonian circuit corresponds exactly to a union of Hamiltonian paths through every
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pattern, and to ensure that one obtains the good result to problem VERTEX COVER
by solving HAMILTONIAN CIRCUIT in this graph.

We now go to the details: Denote (G = (V ,E),k) the considered instance of VERTEX COVER.
The pattern that we will use is the following:

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

To obtain a traversal of this pattern that goes exactly once through every vertex,
only two solutions are possible: either a traversal in two steps, first u1u2u3u4u5u6

then later v1v2v3v4v5v6 (in one direction or the other); or a traversal in only one
step u1u2u3v1v2v3v4v5v6u4u5u6 (or the same but switching the role of the u’s and
of the v ’s).

To every edge (u, v) of the graph G , we associate a pattern of this type, by putting
in correspondence the vertex ui ’s at side u and the vertex vi ’s at side v . We then link
together all the sides of all the patterns corresponding to a same vertex. We con-
struct consequently a chain associated to a given vertex, with still two free “outputs”.
We then link again these two “outputs” to k new vertices s1, · · · , sk . We denote by H
the graph constructed in that way in the remaining part of this proof.

Suppose now that a cover of the initial graph of size k, whose vertices are {g1, · · · , gk }
is given. One can then construct a Hamiltonian circuit of H in the following way:

• starts from s1;

• follow the chain g1 in the following way. When one traverses an edge (g1,h),
if h is also in the cover, simply cross the side g1; otherwise, cross the two sides
simultaneously;

• once the chain g1 is finished, come back to s2 and restart by g2 and so on.

It is clear that every vertex sk is traversed exactly once.
Consider a vertex h of the pattern corresponding to an edge (u, v). One can al-

ways suppose that u is in the cover, say u = g1. It follows that if h is on the same side
as u, h will be reached at least once. We see, according to second item, that it will
not be reached later on. If h is on the same side as v , and if v is not in the cover, h
is visited along the traversal of u. If v = gi , h is crossed by the traversal of the chain
corresponding to gi and at this moment only. We hence have indeed a Hamiltonian
circuit.

Conversely, suppose that we have a Hamiltonian circuit of H . The construction
of our pattern implies that, coming from vertex si , one traverses completely a chain
u and then one goes to a vertex s j . One then traverses k chains; the k correspond-
ing vertices form a cover. Indeed, if (u, v) is an edge, the corresponding pattern is
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traversed by the Hamiltonian path; But it can be only a traversal of a loop corre-
sponding to one of the extremities of the edge.

Finally, the reduction is trivially polynomial. HAMILTONIAN CIRCUIT is hence
NP-complete. □

As in previous section, we can then deduce the NP-completeness of many vari-
ants.

Definition 13.8 (TRAVELING SALESMAN)

Input: A couple (n, M), where M is a matrix n ×n of integers and some integer k.

Answer: Decide if there exists some permutation π of [1,2, · · · ,n] such that∑
1≤i≤n

Mπ(i )π(i+1) ≤ k.

(here indices are taken modulo n so that it makes sense)

Corollary 13.2 The problem TRAVELING SALESMAN is NP-complete.

Remark 13.3 This problems has its name, since it can be seen as establishing the
planning of visits of a traveling salesman that must visit n town, whose distances
are given by matrix M, in less than k kilometers.

Proof:
We reduce HAMILTONIAN CIRCUIT to TRAVELING SALESMAN. To do so, given

a graph G = (V ,E), consider V = {x1, · · · , xn}. We consider then the matrix M n ×n of
integers such that

Mi , j =
{

1 if (i , j ) ∈ E ;
2 otherwise.

We then claim that HAMILTONIAN CIRCUIT(V ,E) is true if and only if TRAVELING SALESMAN(n, M ,n).
Indeed:

If there exists a Hamiltonian circuit in G , one can then indeed construct the per-
mutation π as description the order of traversal of the vertices of graph G : By con-
struction, the sum of the distances of the edges on this circuit will value n.

Conversely, given some permutation with this property, the fact that the n terms
of the sum value at least 1 implies that they are all equal to 1, and so that the edges
(π(i ),π(i +1)) exist in the graph G : we hence have a Hamiltonian circuit. □

Definition 13.9 (LONGEST CIRCUIT)

Input: An (undirected) graph G = (V ,E), with a distance on each edge, and some
integer r .

Answer: Decide if there exists a circuit G that does not visit twice the same vertex
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whose length is ≥ r .

Corollary 13.3 The problem LONGEST CIRCUIT is NP-complete.

Proof: We construct a reduction from HAMILTONIAN CIRCUIT: to do so, to
every graph for HAMILTONIAN CIRCUIT, we associate the length 1 to every edge.
Finding a Hamiltonian cycle is then trivially identical to finding a circuit of length
≥ n in the graph. □

13.1.4 Around 3-COLORABILITY

We have defined what is called a (well) colouring of a graph in the previous chapter.
The smallest integer k such that a graph can be (well) colored is called the chromatic
number of the graph.

It is known that planar graphs are always colorable with 4 colors.
We recall the following result established in previous chapter.

Definition 13.10 (3-COLORABILITY)

Input: An (undirected) graph G = (V ,E).

Answer: Decide if there exists a colouring of the graph that uses at most 3 colors.

Theorem 13.8 The problem 3-COLORABILITY is NP-complete.

13.1.5 Around SUBSET SUM

Definition 13.11 (SUBSET SUM)

Input: A finite sequence of integers x1, x2, . . . , xn and some integer t .

Answer: Decide if there exists E ⊂ {1,2, . . . ,n} such that
∑

i∈E xi = t .

Theorem 13.9 The problem SUBSET SUM is NP-complete.

Proof: SUBSET SUM is in NP since giving E is a certificate that can be checked
in polynomial time.

We use a reduction from VERTEX COVER.
Suppose that a graph G = (V ,E) is given in which one wants to determine if there

exist a vertex cover of size k. Number the vertices and the edges. Let B = (bi j ) the
incident matrix vertex-edges, that is to say bi j = 1 if edge i is incident to vertex j ,
bi j = 0 otherwise.

Consider b ≥ 4. We will construct a sequence F of integers: For every edge i ,
we add integer bi to F . For every vertex j we add integer a j to F , where a j = bm +∑m−1

i=0 bi , j bi .



13.1. SOME NP-COMPLETE PROBLEMS 211

We consider then

t = kbm +
m−1∑
i=0

2bi . (13.1)

Consider a cover S of G of cardinality k. Construct the subsequence made of the
a j ’s such that j ∈ S, and of the bi ’s such that exactly one of the two extremities of
edge i is in S. Then the sum of the elements of this subsequence is t : Indeed, we
sum k times the term bm and each edge i with two extremities in S contributes to
bi for each of its two extremities by the part of the sum related to the a j ’s, and each
edge i with one extremity in S contributes to bi once by the part of the sum related
to the a j ’s, and once by the integer bi .

Conversely, suppose that we have a subsequence of sum t . We split the subse-
quence into X1 made of the elements xi ≥ m, and into X2 made of the elements
xi < bm . To every element of X1, is associated some vertex j : We take S to be the set
of such vertices associated to elements of X1. Since kbm ≤ t < (k +1)bm , necessarily
the size of S is k.

It remains to show that S is a cover. As in every sum of elements of F , there are
at most three terms bi for i < m, and as b ≥ 4, no carry can be produced in the addi-
tion (except possibly for the coefficient of bm that can exceed b −1). Consequently,
the number of occurrences of term bi can be read on equation (13.1), and it must
necessarily be 2 for i < m.

That means that each edge i must necessarily have at least one of its extremity
in S, since otherwise the number of occurrences of term bi would be 0 or 1.

We have indeed reduced VERTEX COVER to SUBSET SUM.
Indeed, it is easy to see that the reduction is done in polynomial time, and hence

we have proved the theorem. □
We can deduce:

Definition 13.12 (KNAPSACK)

Input: A set of weights a1, · · · , an , a set of values v1, · · · , vn , a weight limit A, and
some integer V .

Answer: Decide if there exists E ′ ⊂ {1,2, · · · ,n} such that
∑

i∈E ′ ai ≤ A and
∑

i∈E ′ vi ≥
V .

Corollary 13.4 The problem KNAPSACK is NP-complete.

Proof: From SUBSET SUM: Given E = {e1, · · · ,en} and t an instance of SUBSET SUM,
one considers vi = ai = ei , and V = A = t . □

Definition 13.13 (PARTITION)

Input: A finite sequence of integers x1x2 . . . xn .

Answer: Decide if there exists E ⊂ {1,2, . . . ,n} such that
∑

i∈E xi =∑
i ̸∈E xi .
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Theorem 13.10 The problem PARTITION is NP-complete.

Proof: We will reduce SUBSET SUM to PARTITION. Let (x1x2 . . . xn , t ) be an in-
stance of SUBSET SUM. We set S = ∑

1≤i≤n xi . Changing t in S − t if needed (which
is equivalent to change the obtained set in its complement), we can suppose that
2t ≤ S.

A first natural idea would consist in adding the element u = S − 2t to the se-
quence. The result of a partition would then be two subsequences of sum S− t . One
of the two would contain the element S − 2t , and hence by suppressing the latter,
we would find a subsequence of sum t . Unfortunately, this reasoning fails if S−2t is
already in the sequence.

Instead of doing so, we take the number X = 2S and X ′ = S +2t , and we apply
PARTITION to the sequence x1, x2, . . . , xn , X , X ′. There exists a partition of this se-
quence if and only if there exists a subsequence of x1, x2, . . . , xn of sum t . Indeed, if
there exists a partition of x1, x2, . . . , xn , X , X ′, there exists two subsets complemen-
tary of sum 2S + t . Each of this two subsets must contain either X , or X ′, since oth-
erwise its sum would exceed 2S+t ; So one of the two subsets contains X and not X ′.
By suppressing X in it, we must then obtain a subsequence F of x1, x2, . . . , xn of total
sum t . Conversely, given such a subsequence F of total sum t , then the subsequence
made of F and X , and its complement, constitutes a partition of x1, x2, . . . xn , X , X ′.
We have indeed reduced SUBSET SUM to PARTITION.

It remains to justify that the reduction is indeed polynomial. The main part of the
reduction is the computation of A and A′, and this is indeed polynomial in the size
of the inputs (the addition of k numbers of n bits can be done in time O

(
k logn

)
). □

13.2 Exercises

13.2.1 Polynomial variants

Exercise 13.1 A graph G = (V ,E) is said Eulerian if there exists a cycle that
goes through every edge of G exactly once.

Prove that a connected graph is Eulerian if and only if all its vertices are
of degree two.

Propose a polynomial algorithm to determine if a graph is Eulerian.
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Exercise 13.2 We consider 2SAT.

1. Propose an evaluation t that satisfies φ1(u1,u2,u3) = (u2 ∨¬u3) ∧
(¬u2 ∨u3)∧ (u2 ∨¬u1).

2. What happens for φ2(u1,u2) = (u2 ∨u3)∧ (¬u2 ∨u3)∧ (¬u3 ∨u1)∧
(¬u3 ∨¬u1)?

3. Prove that u ∨ v = (¬u ⇒ v)∧ (¬v ⇒ u).

Starting from an instance of 2SAT we construct a directed graph Gφ =
(V ,E) with

• a vertex for every literal;

• and an arc for every implication (by transforming every clause
into two implications).

4. Draw the graphs Gφ1 and Gφ2 .

5. Prove that there exists a variable u such that Gφ contains a cycle be-
tween u towards ¬u in G, if and only if φ is not satisfiable.

6. Prove that 2-SAT can be solved in polynomial time.

Exercise 13.3 (solution on page 239) [Knights of the round table] Given
n knights, and knowing all the pairs of fierce enemies among them, is it
possible to position them in polynomial time around some round table in
such a way that no pair of fierce enemy are sitting near each other.

13.2.2 NP-completeness

Exercise 13.4 (solution on page 239) A Hamiltonian path is a path that
goes through every vertex of the graph exactly once.

Prove that the following problem is NP-complete:

Input: A (undirected) graph G of n vertices, two distinct vertices u and v of
G.

Answer: Decide if G contains a Hamiltonian path whose extremities are ver-
tices u and v.
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Exercise 13.5 (solution on page 240) Prove that the following problem is
NP-complete.

Input: An (undirected) graph G with n vertices, two distinct vertices u and v
of G.

Answer: Decide if G contains a path of length n/2 between u and v.

Exercise 13.6 (solution on page 241) Prove that the following problem is
NP-complete.

Input: A graph G = (V ,E), and some integer k.

Answer: Decide if there exists a tree covering all the vertices of G with at least k
leaves.
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Exercise 13.7 (solution on page 241) Let G = (V ,E) be a graph.

• A vertex cover S of graph G is a subset of vertices such that all edges
of G are incident to at least a vertex of S.

• A dominating set C of graph G is a subset of vertices such that every
vertex is either in C or neighbour of a vertex of C .

Let G = (V ,E) be a connected graph. We are going to construct a graph
G ′ = (V ′,E ′) from G such that

• V ′ =V ∪E ;

• E ′ = E ∪ {(v, a)|v ∈V , a ∈ E , v is a extremity of a in G}

sv

u

zt

1

2

3 4

5

6

s vu z t

654321

Graph G Graph G ′ (without the edges of G)

1. Prove that if S is a vertex cover of G, then S is a dominating set of G ′.

2. Prove that if S′ is a dominating set of G ′, then there exists some vertex
cover S ⊆V of graph G of cardinal less or equal to S′.

3. Express the problem of minimization of the dominating set as a deci-
sion problem.

4. Prove that this problem is in NP.

5. Prove that the problem is NP-complete.
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Exercise 13.8 (solution on page 241) We will focus on the problem of k-
centre: Given a set of towns whose distances are given, select k towns in order
to put some warehouses in order to minimize the maximal distance from a
town to the closest warehouse. Such a set of k town is called a k-center.

The associated decision problem is the following:

Input: A complete graph K = (V ,E) having a weight function w on the edges,
and some strictly positive integers k and b.

Answer: Decide if exists a set S of vertices such that |S| = k and such that every
vertex v of V satisfies the following condition

mi n{w(v,u) : u ∈ S} ≤ b.

1. Prove that k-CENTRE is in NP.

2. Prove that k-CENTRE is NP-complete, knowing that DOMINANT is
NP-complete.

13.3 Bibliographic Notes

Suggested readings The book [Garey & Johnson, 1979] provides a list of more than
300 NP-complete problems, and is rather pleasant to read. One can find updates of
lists of complete problems on the web.

Bibliography This chapter is reproduced, and adapted from course book [Cori et al., 2010]
from course INF550 of École Polytechnique.



Chapter 14

Space complexity

In this chapter, we will focus on another critical resource of algorithms: Memory. In
complexity theory, when talking about memory as a resource, it is more commonly
called memory space or simply space.

We will start by showing how one can measure the memory used by an algo-
rithm. We will then introduce the main complexity classes considered in complexity
theory.

14.1 Polynomial space

In this section, we will state a set of definitions and results without proofs. The
proofs will be given in next section.

We introduce the analog of TIME(t(n)) for memory:

Definition 14.1 (SPACE(t(n))) Let t :N→N be a function. We define SPACE(t(n))
as the class of problems (languages) that are decided by a Turing machine using
O (t (n)) cells of the tape, where n is the size of the input.

14.1.1 Class PSPACE

We first consider the class of problems decided using polynomial space.

Definition 14.2 PSPACE is the class of problems (languages) decided in polyno-
mial space. In other words,

PSPACE = ⋃
k∈N

SPACE(nk) .

Remark 14.1 As in Chapter 12, we observe that the notion of space is indepen-
dent of the computational model we use. Consequently the use of the Turing

217
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machine model as the basis model for measuring space complexity is rather ar-
bitrary in what follows.

We can also introduce the non-deterministic analog:

Definition 14.3 (NSPACE(t(n))) Let t :N→N be a function. We define NSPACE(t(n))
as the class of problems (languages) that are accepted by a non-deterministic
Turing machine using O (t (n)) cells of the tape on every branch of the computa-
tion tree, where n is the size of the input.

It would then natural to define:

NPSPACE = ⋃
k∈N

NSPACE(nk),

but it turns out that the complexity class NPSPACE is nothing but PSPACE.

Theorem 14.1 (Savitch theorem) NPSPACE = PSPACE.

The proof of this result can be found in Section 14.10.

14.1.2 PSPACE-complete problems

The class PSPACE has some complete problems: The problem QBF (sometimes also
called QSAT) consists, given some propositional calculus formula in conjunctive
normal form φ with the variables x1, x2, · · · , xn (that is to say given an instance simi-
lar to an instance of SAT), to determine whether ∃x1∀x2∃x3 · · · φ(x1, · · · , xn)?

Theorem 14.2 The QBF problem is PSPACE-complete.

We will not prove this result in this document.
Strategic games on graphs lead natural birth to PSPACE-complete problems.
For example, the game GEOGRAPHY consists in taking as input a finite oriented

graph G = (V ,E). Player 1 selects a node u1 of the graph. The player 2 must then
select a node v1 such that there is some arc from u1 to v1. This is then the turn of
player 1 to select another node u2 such that there is an arc from v1 to u2, and so one.
One does not have the right and so on. We don’t have the right to come back twice
to the same node. The first player that cannot continue the path u1v1u2v2 · · · loses.
The problem GEOGRAPHY consists, given some graph G and a node for player 1, in
determining if there exists some winning strategy for player 1.

Theorem 14.3 The problem GEOGRAPHY is PSPACE-complete.

14.2 Logarithmic space

It turns out that the class PSPACE is huge and contains all of P and also all NP: Im-
posing a polynomial memory space is practice often little restrictive.
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This is why one often considers more restictive space bounds, in particular log-
arithmic space. But this introduces some difficulties which show a problem in the
definitions. Indeed, a Turing machine uses at least the cells that contain its input,
and hence Definition 14.1 is not able to talk about functions t (n) < n.

This is why one changes this definition with the following convention: When one
measures the memory space, by convention one does not count the cells containing
the input.

To do so, properly, one must replace Definition 14.1 by the following.

Definition 14.4 (SPACE(t(n))) Let t :N→N be a function. We define SPACE(t(n))
as the class of problems (languages) that are decided by a two tapes Turing ma-
chine:

• the first tape contains the input and is read-only: it can be read, but it
cannot be written;

• the second is initially empty and read-write: it can be read and written,
i.e., it is a usual tape;

using O (t (n)) cells of the second tape, where n is the size of the input.
We define NSPACE(t(n)) with the analogous convention.

Remark 14.2 This new definition does not change anything to all for the pre-
viously introduced complexity classes. However, it the the following definitions
meaningful.

Definition 14.5 (LOGSPACE) The class LOGSPACE is the class of languages (prob-
lems) decided by a Turing machine in logarithmic space. In other words,

LOGSPACE = SPACE(log(n)) .

Definition 14.6 (NLOGSPACE) The class NLOGSPACE is the class of languages
(problems) decided by a non-deterministic Turing machine in logarithmic space.
In other words.

NLOGSPACE = NSPACE(log(n)) .

It turns out that.

Theorem 14.4 LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE.

We furthermore know that NLOGSPACE⊊ PSPACE but we do not know which of
the intermediary inclusions are strict.
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LOGSPACE

NLOGSPACE

P

NP

PSPACE

EXPTIME

Figure 14.1: Inclusions between complexity classes

14.3 Some results and their proof

This section is devoted to proving some basic results of complexity theory, in par-
ticular to the relations between time and space. Observe that Theorem 14.4 follows
from the results below.

14.3.1 Preliminaries

In order not to uselessly complicate some of the proofs, we will restrict to functions
f (n) of proper complexity: We assume that the function f (n) is non-decreasing, that
is to say f (n + 1) ≥ f (n), and such that there exists a Turing machine that takes as
input w and that outputs 1 f (n) in time O

(
n + f (n)

)
and in space O

(
f (n)

)
, where

n = length(w).

Remark 14.3 This is not really restrictive, since all the non-decreasing usual
functions, such as log(n), n, n2, · · · , n logn, n! satisfy these properties.

Remark 14.4 We need this hypothesis, since function f (n) could be not com-
putable, and it could be impossible for example to write a word of length f (n) in
the coming proofs and algorithms.
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Remark 14.5 In most of the following statements, one can avoid this hypothesis,
but at the price of complications in the proofs that we will not discuss.

14.3.2 Trivial relations

Since a deterministic Turing machine is a particular non-deterministic Turing ma-
chine, we have:

Theorem 14.5 SPACE(f(n)) ⊆ NSPACE(f(n)).

Furthermore.

Theorem 14.6 TIME(f(n)) ⊆ SPACE(f(n)).

Proof: A Turing machine writes at most one new cell at every step. The used memory
space hence remains linear in the used time. Remember that the space taken by the
input is not taken into account in the memory space. □

14.3.3 Non deterministic vs deterministic time

The following result if more interesting.

Theorem 14.7 For every language in NTIME(f(n)), there exists an integer c such
that this language is in TIME(cf(n)). If one prefers:

NTIME(f(n)) ⊆ ⋃
c∈N

TIME(cf(n)) .

Proof: Let L be a problem in NTIME(f(n)). By using the principle that we used in
previous chapter, we know that there exists a problem A such that to determine if a
word w of length n is in L, it is sufficient to determine whether there exists a word
u ∈Σ∗ with 〈w,u〉 ∈ A. This last test can be done in time f (n), where n = length(w).
Since in time f (n) one cannot read more than f (n) letters from u, we can restrict to
words u of length f (n). Testing if 〈w,u〉 ∈ A for all the words u ∈ Σ∗ of length f (n)
is easily done in time O

(
c f (n)

)∗O
(

f (n)
) = O

(
c f (n)

)
, where c > 1 is the size of the

alphabet Σ of the machine: Generating all words u of a given length, here f (n)), can
be done for example by counting in base c. □

Remark 14.6 To write the first u to be tested of length f (n), we implicitly use
the fact that this is feasible: This is the case if we assume f (n) to be of proper
complexity. We see here the interest of this (implicit) hypothesis. We will avoid
discussing these type of problems in what follows, because they do not arise for
usual functions f (n).
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14.3.4 Non-deterministic time vs space

Theorem 14.8 NTIME(f(n)) ⊆ SPACE(f(n)).

Proof: We use exactly the same principle as in the previous proof, with the only
difference that we are talking about space. Let L be a problem in NTIME(f(n)). By
using the same idea as before, we know that a problem A such that to determine
whether a word w of length n is in L, it is sufficient to know whether there exists
u ∈ Σ∗ of length f (n) with 〈w,u〉 ∈ A: We use space O

(
f (n)

)
to generate one after

the other the words u ∈ Σ∗ of length f (n) (for example by counting in base c) and
then test for each of them if 〈w,u〉 ∈ A. This last test can be done in time f (n), hence
space f (n). The same space can be used for each of the words u. The space use is
O

(
f (n)

)
for writing the u’s plus O

(
f (n)

)
for the tests. So this takes space O

(
f (n)

)
in

total. □

14.3.5 Non-deterministic space vs time

The decision problem REACH will play an important role: Given a directed graph
G = (V ,E), two vertices u and v , one wants to decide if there exists a path between u
and v in G . It is easy to see that REACH is in P.

To every (deterministic or not) Turing machine we associate a directed graph,
its configuration graph, where the vertices correspond to configurations and whose
arcs correspond to the one-step evolution function of the machine M , that is to say
to relation ⊢ between configurations.

Every configuration X can be described by a word [X ] on the alphabet of the
machine M : If the input w of length n is fixed, for a computation in space f (n),
there are less than O

(
c f (n)

)
vertices in this graph Gw , where c > 1 is the size of the

alphabet of the machine.
A word w is accepted by the machine M if and only if there is a path in this graph

Gw between the initial configuration X [w] encoding the input w , and an accepting
configuration. We may assume without loss of generality that there is a unique ac-
cepting configuration X ∗. Deciding the containment of a word w in the language
recognized by M is consequently solving the problem REACH on 〈Gw , X [w], X ∗〉.

We will translate in various forms all that is done on problem REACH. First, it is
clear that the problem REACH can be solved in time and space O

(
n2

)
, where n is the

number of vertices, by for example a depth-first search traversal.
We deduce:

Theorem 14.9 If f (n) ≥ logn, then

NSPACE(f(n)) ⊆ ⋃
c∈N

TIME(cf(n)) .

Proof: Let L be a problem of NSPACE(f(n)) recognized by a non-deterministic
Turing machine M . By the previous discussion, one can determine whether w ∈ L
by solving decision problem REACH on 〈Gw , X [w], X ∗〉: We said this can be done in
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time polynomial (quadratic) time on the number of vertices, hence in time O
(
c2O( f (n))

)
,

where c > 1 is the size of alphabet of the machine.

□

14.3.6 Non-deterministic space vs deterministic space

We will now show that REACH can be solved in space log2(n).

Proposition 14.1 REACH ∈ SPACE(log2n).

Proof: Let G = (V ,E) be the directed graph given as input. Given two vertices
x and y of this graph and an integer i , we write PAT H(x, y, i ) if and only if there is
a path of length than 2i between x and y . We have 〈G ,u, v〉 ∈ REACH if and only if
PAT H(u, v, log(n)), where n is the number of vertices. It is hence sufficient to know
how to decide the relation PAT H in order to decide REACH.

The trick is to compute PAT H(x, y, i ) recursively by observing that we have PAT H(x, y, i )
if and only if there is an intermediate vertex z such that PAT H(x, z, i−1) and PAT H(z, y, i−
1). One tests then at each level of the recursion every possible vertex z.

To represent every vertex, O
(
log(n)

)
bits are sufficient. To represent x, y , and i ,

one hence uses O
(
log(n)

)
bits. The algorithm has a recursion of depth log(n), every

level of the recursion requiring only to store a triple x, y, i and to test every z of length
O

(
log(n)

)
. In total, we hence use space O

(
log(n)

)∗O
(
log(n)

)=O
(
log2(n)

)
. □

Theorem 14.10 (Savitch) If f (n) ≥ log(n), then

NSPACE(f(n)) ⊆ SPACE(f(n)2) .

Proof: We use the previous algorithm to determine if there is a path in graph Gw

between X [w] and X ∗.

Observe that there is no need to explicitly construct the graph Gw but that one
can use the previous algorithm on-line: Instead of writing down the graph Gw com-
pletely, and then reading in this encoding of the graph if there is an arc between
a vertex X and a vertex X ′, one can in a lazy way, by recompute this information,
determine every time that a test is needed whether X ⊢ X ′. □

Corollary 14.1 PSPACE = NPSPACE.

Proof: We have
⋃

c∈NSPACE(nc) ⊆⋃
c∈NNSPACE(nc) by Theorem 14.5, and

⋃
c∈NNSPACE(nc) ⊆⋃

c∈NSPACE(n2c) ⊆⋃
c∈NSPACE(nc) by the previous theorem. □
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14.4 Separation results

14.4.1 Hierarchy theorems

We say that a function f (n) ≥ log(n) is space constructible, if the function that maps
1n to 1 f (n) is computable in space O

(
f (n)

)
.

Most of the usual functions are space constructible. For example, n2 is space
constructible since a Turing machine can obtain n in binary by counting the number
of 1s, and writing n2 in binary by using any method to multiply n with itself. The
space used for this is certainly at most O

(
n2

)
.

Theorem 14.11 (Space Hierarchy theorem) For every space constructible func-
tion f :N→N, there exists a language L that is decided in space O

(
f (n)

)
but not

in space o( f (n)).

Remark 14.7 We will prove only a version weaker than the statement above. The
precise above theorem is a generalization of the following idea. The factor log
comes from the construction of a univeral Turing machine really more efficience
that the one considered in this document, introducing only a logarithmic time
speeddown.

Proof:
One considers the (very artificial) language L that is decided by the following

Turing machine B :

• on an input w of size n, B computes f (n) and reserves (marks) a space f (n)
for the coming simulation;

• If w is not of the form 〈A〉10∗, for a Turing machine A, then the Turing ma-
chine B rejects.

• Otherwise, B simulates A on the word w for c f (n) steps to determine whether
A accepts in space at most f (n):

– If A accepts in this time, then B rejects;

– otherwise B accepts.

In other words, B simulates A on w , step by step, and decrements a counter c
at each step. If this counter reaches 0 or if A rejects, then B accepts. Otherwise, B
rejects.

By the existence of a universal Turing machine, there exist integers k and d such
that L is decided in space d × f (n)k .

Suppose that L is decided by a Turing machine A in space g (n) with g (n)k =
o( f (n)). There must exists an integer n0 such that for n ≥ n0, we have d × g (n)k <
f (n).

As a consequence, the simulation of A by B will indeed be complete on every
input of size n0 or more.
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Consider what happens when B is run on the input 〈A〉10n0 . Since this input is
of size greater than n0, B answers the opposite of Turing machine A on the same
input. Hence B and A do not decide the same language, and hence Turing machine
A does not decide L, which is a contradiction.

As a consequence L is not decidable in space g (n) for any function g (n) with
g (n)k = o( f (n)).

□
In other words:

Theorem 14.12 (Space Hierarchy theorem) Let f , f ′ :N→N be two space con-
structible functions such that f (n) = o( f ′(n)).
Then the inclusion SPACE(f)⊊ SPACE(f’) is strict.

Using the same principle, one can prove.

Theorem 14.13 (Nondeterminstic Hierarchy theorem) Let f , f ′ :N→N be two
space constructible functions such that f (n) = o( f ′(n)).
Then the inclusion NSPACE(f)⊊NSPACE(f’) is strict.

14.4.2 Applications

We deduce.

Theorem 14.14 NLOGSPACE⊊ PSPACE.

Proof: The class NLOGSPACE is completely included in SPACE(log2 n) by Sav-
itch’s theorem. But the latter is a strict subclass of SPACE(n), which is included in
PSPACE. □

Analogously, we obtain.

Definition 14.7 Let
EXPSPACE = ⋃

c∈N
SPACE(2nc

) .

Theorem 14.15 PSPACE⊊ EXPSPACE.

Proof: The class PSPACE is completely included in, say, SPACE(nlog(n)). The latter
is a strict subset of SPACE(2n), that is in turn included in EXPSPACE. □

14.5 Exercices

Exercise 14.1 (solution on page 242) Prove that if every NP-hard language
is PSPACE-hard, then PSPACE = NP.
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14.6 Bibliographic notes
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Chapter 15

Solutions of some exercises

We will find in this chapter the correction of some of the exercises. The reader is
invited to sent to bournez@lix.polytechnique.fr a redaction of the solution 1 of any
exercise that is not corrected in these pages, or any more elegant solution to the
presented solutions.

Chapter 1

Exercice 1.3 (page 10). We can write A ∩B c = (A ∩ Ac )∪ (A ∩B c ) = A ∩ (Ac ∪B c ) =
A∩(A∩B)c . Similarly A∩C c = A∩(A∩C )c . So A∩B = A∩C implies A∩B c = A∩C c .

Since (X c )c = X for any subset X of E , we deduce that A ∩B c = A ∩C c implies
A∩ (B c )c = A∩ (C c )c implies A∩B = A∩C .

Exercice 1.5 (page 15). The function f (x, y) = y+(0+1+2+·· ·+(x+y)) enumerates
the elements ofN2 as in the figure.

The function f is indeed bijective: Let n ∈ N. There exists a unique a ∈ N such
that 0+1+·· ·+a ≤ n < 0+1+·· ·+ (a +1). The unique antecedent n by f is given by
(x, y) with y = n − (0+1+·· ·+a) and x = a − y .

Another bijection between N2 and N is given by the function g :N2 →N defined
by g (x, y) = 2x (2y + 1)− 1. The fact that this is indeed a bijection comes from the
fact that any strictly positive integer is the produce of a power of two and some odd
number.

Chapter 2

Exercice 2.3 (page 18). The proof is by contradiction. Consider X = {k ∈N|P (k) is false}.
If X is non empty, it admits a least element n.

1If possible using LATEX.

227
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We cannot have n ̸= 0. Indeed, one knows that for n = 0, by supposing for any
integer k < 0 the property P (k) we deduce P (0), since there is no k < 0, that means
that we can deduce P (0) without any hypothesis.

This states: P (n − 1),P (n − 2), . . . ,P (0) must be true from definition of X . We
obtain a contradiction with the property applied in n.

Exercice 2.4 (page 19). We must first be convinced that L∗.M is solution of equa-
tion X = L.X ∪M .

For M = {ϵ}, this is equivalent to state that L∗ = L.L∗∪ {ϵ}. This follows from

L∗ = ⋃
n∈N

Ln = L0 ∪ (
⋃

n≥1
Ln) = {ϵ}∪ (

⋃
n≥0

L.Ln) = {ϵ}∪L.L∗.

We deduce for general M that L∗.M = L.L∗.M∪{ϵ}.M , and so that L∗.M is indeed
solution of equation X = L.X ∪M .

There remains to prove that this is the unique solution. Let X ⊂ Σ∗ satisfying
X = L.X ∪M .

To prove that L∗.M ⊂ X , it suffices to prove that for any integer n we have Ln .M ⊂
X , since L∗.M =⋃

n≥0 Ln .M . We prove by recurrence on n the property P (n): Ln .M ⊂
X .

P (0) is true since L0.M = {ϵ}.M = M ⊂ M ∪L.X = X .
Suppose P (n) true. We have Ln+1.M = L.Ln .M ⊂ L.X ⊂ L.X ∪M = X . So P (n +1)

is true.
Conversely, we prove by recurrence the property Q(n): Every word w of X of

length n belongs to L∗.M . This clearly provides the other inclusion.
For this, we use the second induction principle. Suppose that for all k < n, Q(k)

is true. Let w ∈ X be a word of length n. Since X = L.X ∪ M , two cases must be
considered. Let w ∈ M and we have directly w ∈ L∗.M since M ⊂ L∗.M .

Let w ∈ L.X and we can write w = u.v with u ∈ L, and v ∈ X . Since ϵ ̸∈ L, the
length of u is non-null and hence the length of v is strictly less than the one of w . By
induction hypothesis, we have v ∈ L∗.M . So w = u.v ∈ L.L∗.M ⊂ L∗.M , which proves
Q(n), and terminates the demonstration.

Exercice 2.5 (page 22). The language L of the well parentheses expressions formed
with identifiers taken in a set A and from the operators + and × is the subset of
E = (A∪ {+,×}∪ {(, )})∗ defined inductively by

(B) A ⊂ L;

(I ) e, f ∈ L ⇒ (e + f ) ∈ L;

(I ) e, f ∈ L ⇒ (e × f ) ∈ L.

Exercice 2.6 (page 24). The proof is similar to the proof of Theorem 2.4 (which is a
generalisation of this phenomenon).

Exercice 2.7 (page 27). Let P (x) be the property: “x is non-empty and without any
vertex with a unique non-empty son”. Clearly P (x) is true for x = (;, a,;). If we
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suppose P (g ) and P (d), for g ,d ∈ ABS, clearly P (x) is also true for x = (g , a,d). The
first property is hence satisfied.

Let P (x) be the property n(x) = 2 f (x)− 1. We have P (x) for x = (;, a,;), since
n(x) = 1, and f (x) = 1, and 1 = 2∗1−1.

Suppose P (g ) and P (d) for g ,d ∈ ABS. Consider x = (g , a,d). We have n(x) =
1+n(g )+n(d) = 1+2∗ f (g )−1+2∗ f (d)−1 = 2∗ ( f (g )+ f (d))−1 = 2∗ f (x)−1.

The property is hence true for every x ∈ ABS.

Chapter 3

Exercice 3.17 (page 47). It is clear that the second property implies the first: For
any truth value distribution v , we have v(G) = 1 if G is a tautology, and v(F ) = 0 if ¬F
is one. In both cases v((F ⇒G)) = 1.

Suppose now that the second property is wrong. We can choose some distribu-
tion of truth values v such that v(¬F ) = 0, and some truth value distribution v ′ such
that v ′(G) = 0.

We define a distribution of truth value v ′′, by letting for each propositional vari-
able x, v ′′(x) = v(x) if x has at least one occurrence in F and v ′′(x) = v ′(x) if x has
no occurrence in F . By construction, this distribution of truth values coincide with
v on F and v ′ over G . We deduce that v ′′(F ) = v(F ) = 0 and v ′′(G) = v ′(G) = 0. And
hence v ′′((F ⇒G)) = 0. The first property is hence necessarily wrong.

Exercice 3.18 (page 47). It is clear that if a graph is colorable with k colors, each
of its subgraph is colorable with k colors (the same). The difficulty is in proving the
converse direction.

We introduce for each pair (u, i ) ∈ V × {1,2, . . . ,k} some propositional variable
Au,i . We construct a set Γ of formulas of propositional calculus over the set of vari-
ables Au,i that is satisfiable if and only if G is k-colorable. The idea is that Au,i en-
codes the fact that the vertex u is colored with the color i . The set Γ is defined as
Γ= Γ1 ∪Γ2 ∪Γ3, where each of the Γi expresses a particular constraint.

• For Γ1: Every vertex has a color:

Γ1 = {Au,1 ∨·· ·∨ Au,k |u ∈V }.

• For Γ2: Every vertex has at most one color:

Γ2 = {¬(Au,i ∧ Au, j )|u ∈V ,1 ≤ i , j ≤ k, i ̸= j }.

• For Γ3: Each edge has not its extremities of the same color:

Γ3 = {¬(Au,i ∧ Av,i )|u ∈V ,1 ≤ i ≤ k, (u, v) ∈ E }.

Doing so, a graph is colorable with k colors if and only if one can satisfy all the
formulas of Γ= Γ1 ∪Γ2 ∪Γ3.
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We will then use the compactness theorem: Let Γ0 be some finite subset of Γ. Let
V0 = {u1, · · · ,un} be the vertices u such that Au,i appears among the formulas of Γ0.
Let G0 = (V0,E0) be the subgraph determined by V0.

If we we suppose that we have a graph such all the subgraphs are colorable with
k colors, in particular this must hold for G0, and so Γ0, that is a subset of the con-
straints expression the fact that Γ0 is k-colorable, is satisfiable.

Since Γ has all its finite subsets satisfiable, by the compactness theorem, Γ is
hence satisfiable. This means that G is hence satisfiable. This means that G is k-
colorable, since G is k-colorable if and only if Γ is satisfiable.

Chapter 4

Exercice 4.1 (page 52). We write

• F1 : ((F ⇒ ((F ⇒ F ) ⇒ F )) ⇒ (((F ⇒ (F ⇒ F )) ⇒ (F ⇒ F ))) (instance of axiom
2.)

• F2 : ((F ⇒ ((F ⇒ F ) ⇒ F )) (instance of axiom 1.);

• F3 : ((F ⇒ (F ⇒ F )) ⇒ (F ⇒ F )) (modus ponens from F1 and F2);

• F4 : (F ⇒ (F ⇒ F )) (instance of axiom 1.);

• F5 : (F ⇒ F ) (modus ponens from F3 and F4).

Exercice 4.2 (page 52). One direction is easy: If F1,F2, . . . ,Fn is a proof of F ⇒ G
from T , then F1,F2, . . . ,Fn ,F,G is a proof from G from T ∪ {F }.

Conversely, we prove by recurrence on n that if there exists a proof of length n of
G from T ∪ {F }, then there exists a proof of (F ⇒G) from T .

By recurrence hypothesis, there exists a proof from T of each of the formulas
(F ⇒ F1), . . . , (F ⇒ Fn), this applying by default to the case n = 1. Consider the
formula Fn that is to say G . Three cases are possible:

1. The formula G is an axiom or a formula of T . We then have T ⊢ G . We know
that (G ⇒ (F ⇒G)) is an instance of axiom 1., hence we have ⊢ (G ⇒ (F ⇒G)),
and hence also T ⊢ (G ⇒ (F ⇒G)). By modus ponens, we have T ⊢ (F ⇒G).

2. G is the formula F . The correction of the previous exercise provides a proof of
(F ⇒ F ).

3. There exists i , j < n such that H j is a formula (Hi ⇒G). By recurrence hypoth-
esis, we have T ⊢ (F ⇒ Hi ) and T ⊢ (F ⇒ (Hi ⇒G)). Then the sequence:

• ((F ⇒ (Hi ⇒G)) ⇒ ((F ⇒ Hi ) ⇒ (F ⇒G))) (instance of axiom 2.);

• ((F ⇒ Hi ) ⇒ (F ⇒G)) (modus ponens)

• (F ⇒G) (modus ponens)
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is a proof of (F ⇒G) from (F ⇒ Hi ) and (F ⇒ (Hi ⇒G)). By concatenating this
proof of (F ⇒ Hi ) and of (F ⇒ (Hi ⇒ G)) from T , we obtain a proof of F ⇒ G
from T .

Exercice 4.3 (page 52). For the first assertion: Suppose that T ∪ {F } ⊢ G . By the
deduction theorem (Exercise 4.2), we have T ⊢ (F ⇒G). But the formula ((F ⇒G) ⇒
(¬G ⇒¬F )) is an instance of axiom 5, so by modus ponens, we obtain T ⊢ (¬G ⇒
¬F ), so by the deduction theorem again T ∪ {¬G} ⊢¬F .

Suppose now T ∪{¬G} ⊢¬F . By what is above, we obtain T ∪{¬¬F } ⊢¬¬G . Since
¬¬G ⇒ G is an instance of axiom 4., by modus ponens, we deduce T ∪ {¬¬F } ⊢ G .
But (F ⇒¬¬F ) is an instance of axiom 3. From this, we deduce from any proof of
a formula from T ∪ {¬¬F } a proof of the same formula from T ∪ {F }, and we finally
obtain T ∪ {F } ⊢G .

For the second assertion: We have {¬F,¬G} ⊢ ¬F by definition, so by the first
assertion, {¬F,F } ⊢G , and from there T ⊢G if both F and ¬F are provable from T .

Exercice 4.4 (page 52). We have {¬G ,¬G ⇒ G} ⊢ G . By using Exercice 4.3, item 1,
this is equivalent to say {¬G ,¬G} ⊢¬(¬G ⇒G). Hence {¬G} ⊢¬(¬G ⇒G). By using
Exercice 4.3, item 1 in the reverse direction, {¬G ⇒G} ⊢G .

Exercice 4.5 (page 52). Suppose T ∪ {F } ⊢G and T ∪ {¬F } ⊢G . By applying the first
assertion of Exercise 4.3, we obtain T ∪ {¬G} ⊢¬F and T ∪ {¬G} ⊢ F . By the second
assertion of Exercise 4.3, we obtain that any formula is provable from T ∪ {¬G}, and
in particular T ∪ {¬G} ⊢ G . By the deduction theorem (Exercise 4.2), T ⊢ (¬G ⇒ G).
It suffices then to use Exercise 4.4 in order to deduce T ⊢G .

Chapter 5

Exercice 5.1 (page 70). Only the last word corresponds to a formula: In the first
and in the second, the arity of R2 is not respected. In the third the quantification ∃R
is not on a variable but on a relation symbol. This is what is called a second order
formula, and this is not considered as valid formula in the previous definition (i.e.
in this document).

Exercice 5.2 (page 71). There is no free variable nor free occurrence in the first for-
mula. In the second formula, the variable x is free: Its first occurrence is bound, its
second occurrence is free.

Exercice 5.4 (page 75). To avoid too heavy notations, we will write xR y pour R(x, y),
and we authorize ourselves not to write all the parentheses. It suffices to consider

(∀xxRx)∧ (∀x∀y(xR y ∧ yRx ⇒ x = y))∧ (∀x∀y∀z(xR y ∧ yRz ⇒ xRz)).

Exercice 5.7 (page 78). We will only indicate here by some arrow the implications.
For example ⇒ means that the left member implies the right member.
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1. ⇔
2. ⇔
3. ⇒
4. ⇔
5. ⇒
6. ⇒

Exercice 5.8 (page 80). Here are some equivalent prenex forms.

∃x∀x ′∀y(P (x)∧ (Q(y) ⇒ R(x ′)))

∀x∀y∃x ′(P (x ′)∧ (Q(y) ⇒ R(x)))

∀x∃x ′∀y(P (x ′)∧ (Q(y) ⇒ R(x)))

Chapter 6

Exercice 6.1 (page 86). The third item of Definition 6.3 is true for any relation sym-
bol R and in particular for the symbol=of arity 2: In particular, we have∀x1∀x ′

1∀x2(x1 =
x ′

1 ⇒ (x1 = x2 ⇒ x ′
1 = x2). Since we have x = x by the first item of Definition 6.3, if we

have x = y then we have y = x by applying the case where x1, x2, x ′
1 are respectively

x, x and y .

Exercice 6.6 (page 90). Clearly the last assertion follows from the second, since the
first produces a model that cannot be the standard model of the integers that satis-
fies the axioms of Robinson. Indeed, in the standard model of the integers (in the
integers) the addition is commutative.

For the first assertion, it suffices to prove the property by recurrence over n. It is
true for n = 0 by axiom ∀x 0+x = x, applied in x = sm(0). Suppose the property true
at rank n−1 ≥ 0: We have sn(0)+sm(0) = s(sn−1(0))+sm(0), which according to axiom
∀x∀y s(x)+y = s(x+y) applied for x = sn−1(0) and y = sm(0) values s(sn−1(0)+sm(0))
so s(sn+m−1(0)) by recurrence hypothesis, in other words, sn+m−1+1(0) = sn+m(0).

For the second assertion, we must consequently construct a model whose base
set contains something else than (only) the elements s(n)(0) for some integer n. Here
is a way to proceed. One considers a set X with at least two elements.

We consider the structure M whose base set is

M =N∪ (X ×Z),

and where the symbols s,+,∗,= are interpreted by the following conditions:
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• = is interpreted by equality. s,+,∗ extends the corresponding functions over
N;

• for a = (x,n):

– s(a) = (x,n +1);

– a +m = m +a = (x,n +m);

– a ∗m = (x,n ∗m) if m ̸= 0, and (x,n)∗0 = 0;

– m ∗a = (x,m ∗n);

• for a = (x,n) and b = (y,m):

– (x,n)+ (y,m) = (x,n +m);

– (x,n)∗ (y,m) = (x,n ∗m).

(in these definitions, N and Z denotes the usual (standard) sets). One checks that
this structure satisfies all the axioms of Robinson, and that the addition is not com-
mutative.

Exercice 6.9 (page 91). We will only provide here a scheme of the proof . We prove
successively that

• ∀v(v +0 = v)

• ∀v∀v ′v + s(v ′) = s(v + v ′)

• ∀v(v +1 = s(v)) where 1 denotes s(0)

• ∀v∀v ′(v + v ′ = v ′+ v)

For example, ∀v(v +0 = v) is proved by observing that 0+0 = 0 and that ∀v((v +
0 = v) ⇒ (s(v)+0 = s(v)). We use the scheme of Peano axioms in the case where the
formula F is the formula v +0 = v to deduce ∀v(v +0 = 0).

Exercice 6.12 (page 99). Consider a new constant symbol c. Add this constant
symbol to the signature of Peano axioms. Consider T defined as the union of Peano
axioms of the formulas ¬c = sn(0), for some integer n. Every finite subset of T has a
model as it is included in the union of Peano axioms, and of the formulas ¬c = sn(0)
for 1 ≤ n ≤ N for some integer N : It suffices to observe that if one interprets c by
N +1, one then obtain a model of this finite subset.

By compactness theorem, T has a model. This model must satisfy ¬c = sn(0) for
every integer n. The interpretation of c is hence not a standard integer. The model
is hence non-standard: It contains some “integers” that are not standard.

Exercice 6.13 (page 100). Suppose that T is a theory at most countable that has a
model. It is coherent: Corollary 6.3 applies. Observe that the proof of Corollary 6.3
(actually the proof of completeness theorem) consists at the end in constructing a
model M of T whose domain is made of terms over the signature. Since the set of
terms over a countable signature is countable, the model M that is built is indeed a
model of T .
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Chapter 7

Exercice 7.2 (page 110). Here is a solution: One considers a machine on the set of
states Q = {q0, q1, q2, · · · , q6} with Γ= {0,1,B}.

q0start q1 q2

q3

q4q6q5

0/B →

0/0 →

1/1 →

0/1 ←

1/1 →
0/0 ←

1/1 ←

B/B →

B/B ←

0/0 ←

1/B ←
B/0 →

B/B →

0/B →

1/B →

1/B →

The machine is built in order to do the following work: It seeks the 0 at the left-
most position, and it replaces it by a blank. It searches then on the right a 1, and
when it finds one, it continues on the right until it finds a 0, that it replaces by a 1.
The machine then returns left in order to find the 0 at the most left position that it
identifies by finding the first blank on the left, and then moving one cell right from
this blank.

The process is repeated until:

• either when searching on right a 0, one meets a blank. Then the n 0’s in 0m10n

have been changed into 1’s and n +1 of the m symbols 0 have been changed
into B. In that case, the machine replaces the n + 1 symbols 1 by a 0 and n
blanks, which remains m −n symbols 0 on the tape. Since in this case, m ≥ n,
m ⊖n = m −n.

• or in restarting the cycle, the machine does not succeed to find a 0 to be
changed in a blank, since the m first 0’s have already been changed in B. Then
n ≥ m, and so m ⊖n = 0. The machine then replaces every 1 and 0 remaining
by some blanks and halts with a tape completely blank.

Chapter 9

Exercice 9.1 (page 136). A is decidable.
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Indeed: Suppose that s values 0. In that case, A is recognized by the Turing ma-
chine that compares the letter in front of the head to 0 and accepts if it values 0 and
rejects otherwise.

Suppose that s values 1. In that case, A is recognized by the Turing machine that
compares the letter in front of the head to 0 and accepts if it values 1 and rejects
otherwise.

In any case, A is decided by a Turing machine.

Exercice 9.2 (page 148). This is a direct application of Rice theorem.

Exercice 9.3 (page 155). Suppose that S ⊂ N is decidable. The function χ is com-
putable, since it is sufficient on input n to determine if n ∈ S and to return 1 if this is
the case, 0 otherwise.

Conversely, if χ is computable, then S is decidable: On some input n, one com-
putes χ and one accepts (respectively: rejects) if χ(n) = 1 (resp. χ(n) = 0).

Suppose that S ⊂N is semi-decidable. The function is computable, since it is suf-
ficient on input n to simulate the machine that computes the function, and accepts
if this simulation halts.

Conversely, if the function is computable, S is semi-decidable: On some input
n, one simulates the computation of the function, and one accepts if the simulation
accepts.

Exercice 9.1 (page 155). Let H be the computable function defined by: If t is some
unary program (a Turing machine) of A, then H(〈t〉,n) provides the result of t on
n, otherwise H(〈t〉,n) = 0. By construction, H is some interpreter for all the unary
programs of A. The function H is total.

We prove that the total computable function H ′(n) = H(n,n)+1 is not in A: In-
deed, otherwise there would be a t in A that computes H ′. We would have for all
n, H(〈t〉n) that would be the result of t on n, so H ′(n) = H(n,n)+1. In particular,
H(〈t〉,〈t〉) = H(〈t〉,〈t〉)+1. Contradiction.

This result implies the undecidability of the halting problem.

• Indeed, suppose that H(A,n) decides of the halting of the Turing machine A
on input n. For all unary program f , let f ′ be the unary program that always
halts defined by f ′(n) = f (n) if H a( f ,n), 0 otherwise.

• Let A defined as the set of coding of Turing machines of the form if H( f ,n)
then f (n) otherwise 0.

• For any unary program f that always halt, f ′ and f computes the same func-
tion.

• Any total unary function is represented by some Turing machine A. This is in
contradiction with the previous result.

Exercice 9.4 (page 155). To test whether x ∈ E , one enumerates the elements of E
until one finds x, in which case one accepts, or an element greater than x, in which
case one rejects.
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Exercice 9.5 (page 155). To extract an infinite decidable set from an infinite com-
putably enumerable set, it is sufficient to extract a subsequence strictly increasing
from the sequence of the f (n): one starts with y = max = 0. For n = 0,1, . . . ,

• One computes y = f (n).

• If y > max the one sets max := y , and one prints f (n)

Exercice 9.6 (page 155). For n = 0,1, . . . , one tests if n is in the set, and if so, one
prints it.

Exercice 9.7 (page 156). To test if x ∈ ∃A, it is sufficient to test for y = 0,1, . . . if
(x, y) ∈ A. One halts as soon as one find such a y .

Every computably enumerable language is enumerated by some computable
function f . It is then to the projection of the set A = {( f (n),n)|n ∈ N}. This set A
is indeed decidable.

Exercice 9.10 (page 157). Their uncomputability comes from Rice theorem.
The first is computably enumerable: One enumerates the triples (a,b, t ) with a

and b two distinct words, t some integer, and for each of them one tests if A accepts
a and b in time t . If yest, one accepts.

The second is not computably enumerable since its complement is computably
enumerable: One enumerates the pairs (a, t ) and one tests if a is accepted by A in
time t . If so, one accepts.

Chapter 10

Exercice 10.1 (page 162). Let N be the standard model of the integers. T h(N) cor-
responds to the closed formula F true inN.

The incompleteness theorem states that exist some closed formula true of T h(N)
which are not provable, nor their negation from Peano axioms, or from any “reason-
able” axiomatisation of the integers.

Let F be such a closed formula. Suppose without loss of generality that F is sat-
isfied onN.

The incompleteness theorem states that non-provable formulas are exactly those
that are true in all the models. This simply means that there must exist some other
models than N to Peano axioms: In particular, there must exist a model where F is
not satisfied.

Repeated in another way, there is a model of Peano axiom with F satisfied (for
exampleN) and another mode where F is not satisfied.

The completeness theorem remains compatible since F is not satisfied in all the
models.

Exercice 10.1 (page 165). We consider the Turing machine S that does the follow-
ing:
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• on every input w

– obtain by the recursion theorem its own description 〈S〉.
– construct the formula ψ = γS,ϵ (the formula γ of the proof of the course

for S)

– enumerate the provable formulas as long as γS,ϵ is not produced.

– if previous steps eventual terminates, then accepts.

The formula ψ = γS,ϵ of the second step is not provable: Indeed ψ is true if an
only if S does not accept the empty word, because:

• If S finds a proof ofψ, then S accepts the empty word, and hence formulaψ is
wrong:

• (If arithmetic is coherent one cannot prove some wrong formula, and hence)
This case cannot happen.

Now observe that if S does not find a proof of ψ, then S is not accepting the
empty word: Consequently, ψ is true, but is not provable!

In short: ψ is true, but is not provable.

Chapter 11

Exercice 11.1 (page 176). We will use the fact that the limit exists and is positive to
prove that f (n) =O

(
g (n)

)
and f (n) =Ω(g (n)), according to the definition ofΘ.

Since

lim
n→∞

f (n)

g (n)
= c > 0,

from the definition of a limit, there is a rank n0 from which the ratio is between 1
2 c

and 2c. So f (n) ≤ 2cg (n) and f (n) ≥ 1
2 cg (n) for all n ≥ n0, which proves exactly what

is required.

Exercice 11.3 (page 177). The computation of the maximum of n numbers can be
done in linear time (See course).

A sorting algorithm (one takes n numbers in input and must produce as output
the same numbers but in increasing order) such as the merge sort works in time
Ø(n logn): The merge sort consists, in order to sort n numbers, in splitting the set in
two subsets of the same time (up to 1), sort recursively each subset, and then merge
the two results. The merging of two sorted list can be solved in a time linear in the
sum of the lengths of the two lists. Indeed, merging in that case consists in repeating
the following operation as long as it is possible: Write the least element of the two
lists„ and then delete this element. This gives a global complexity for merge sort that
satisfies a recursive equation of type Tn =O (2∗Tn/2)+O (n) which can be proved to
providing a complexity of On logn.
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Suppose that n sets S1, S2, . . . , Sn are given, each of them being a subset of
{1,2, . . . ,n}, and that one wants to know if there is a disjoint pair among these sets.
This can be solved in cubic time: It is sufficient to go through all the pairs Si and S j ,
and for each pair to scan the elements of Si to know if there are in S j .

The following chapters contain mainly problems for which no polynomial solu-
tions is found: The presented algorithms are not polynomial.

Exercice 11.4 (page 177). The time is respectively for (a),

• multiplied by 4;

• multiplied by 8;

• multiplied by 400;

• multiplied by2 + 1;

• squared.

And for (b):

• increases of 2n +1;

• increases of 3n2 +3n +1;

• increases of 200n +100;

• transformed into (n +1)log(n +1), hence essentially increased of O
(
n logn

)
;

• multiplied by 2.

Chapter 12

Exercice 12.4 (page 201). If P = NP then, since the complement of P is P (it is suf-
ficient to inverse the accepting state and the rejecting state of a machine), we must
have NP equal to its complement. Hence, we cannot have NP which is not equal to
its complement.

Exercice ?? (page ??). This exercise is among the corrected exercises in [Kozen, 2006].
Concerning first item, this is incorrect because we have not shown how to pro-

duce x deterministically when it exists.
For second item: The data of x corresponds to a valid certificate that can be

checked in polynomial time.
For the third item. Suppose that P = NP. Hence B is in P. Using this fact, given

y of length n we can do a binary search on strings of length n to find x such that
f (x) = y . Indeed, first ask whether (y,ϵ) ∈ B?. If not, then no such x exists; halt an
report failure. If so, ask, whether (y,0) ∈ B . If yes, there is an x with f (x) = y whose
first bit is 0, and if no, all such x have first bit 1. Now, depending on the previous
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answer, ask whether (y,00) ∈ B or (y,10) ∈ B as appropriate. The answer determines
the second bit of x. Continue in this fashion until all the bits of some x with f (x) = y
have been determined.

For the fourth and fifth item: By definition.
Concerning sixth item: First determine whether the input is of the formφ#t , and

if so, evaluate φ on t . If f is invertible, then P = NP, because φ is satisfiable if and
only if there exists x such that f (x) =φ#1|t |. We already proved the reverse direction.

The last assertion is then immediate.

Chapter 13

Exercice 13.3 (page 213).

• The problem is in NP since given some seating plan, one can check in polyno-
mial time if every knight is not sitting close to one of its enemies.

• We will do the reduction from the problem HAMILTONIAN CIRCUIT.

Let I =<G = (V ,E) > be an instance of HAMILTONIAN CIRCUIT.

We transform this instance into an instance I2 of the problem KNIGHTS OF THE ROUND TABLE
in the following way:

– Each vertex of the graph is a knight;

– Two knights are enemies if and only there is no edge in G involving the
two vertices represented by these two knights.

This transformation can be done in polynomial time (we have constructed
actually the complementary of graph G).

It is easy to prove that:

– If there exists some Hamiltonian cycle in G , then there is a seating plan.
It suffices to see that an edge in G encodes the fact that two knights are
not enemies. So the seating plan corresponds to a Hamiltonian cycle.

– If there exists a seating plan, then there exists some Hamiltonian cycle in
G .

So the problem KNIGHTS OF THE ROUND TABLE is at least as hard as the Hamil-
tonian cycle problem.

Hence, the problem KNIGHTS OF THE ROUND TABLE is NP-complete.

Exercice 13.4 (page 213).

• The problem HAMILTONIAN CIRCUIT is in NP since given a path, one can
check in in polynomial time if it crosses exactly once every vertex of the graph
and if it has u and v as extremities.
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• We are going now to do a reduction from the problem HAMILTONIAN CYCLE.
Let I =< G = (V ,E) > be an instance of problem HAMILTONIAN CYCLE. We
are going now to transform this instance into some instance of the problem
HAMILTONIAN PATH in the following way: We will construct a graph G ′ = (V ′,E ′)
such that.

– Let u be some arbitrary vertex of V ;

– V ′ :=V ∪ {v} such that v is a vertex not belonging to V ;

– E ′ := E ∪ {(v,ℓ) : ℓ is a neighborhood of u in G}.

This transformation can be done in polynomial time (we just need to copy the
graph G by adding a vertex and some edges).

It is easy to prove that:

– If there exists some Hamiltonian cycle in G , then there exists a Hamilto-
nian path in G ′.
Let C = (u,ℓ1, . . . ,ℓn−1,u) be a Hamiltonian cycle in G . We construct the
path P = (u,ℓ1, . . . ,ℓn−1, v) in the graph G ′. This path is Hamiltonian:
It goes exactly once through v and through each vertex of G since C is
some Hamiltonian cycle.

– If there exists some Hamiltonian path in G ′, then there exists some Hamil-
tonian cycle in G .

Let P = (u,ℓ1, . . . ,ℓn−1, v) be a path in the graph G ′. The cycle C = (u,ℓ1, . . . ,ℓn−1,u)
is Hamiltonian for the graph G .

So the problem HAMILTONIAN CYCLE reduces to problem HAMILTONIAN PATH

in polynomial time.

So the problem HAMILTONIAN PATH is NP-complete.

Exercice 13.5 (page 214).

• The problem PATH is in NP since given some path, on can check in polynomial
time if it is of length n/2 and that it as u and v as extremities.

• We are going now to do a reduction from the problem HAMILTONIAN PATH. Let
I =<G = (V ,E),u, v > be an instance of problem HAMILTONIAN PATH.

We transform this instance in an instance I ′ of problem CHAIN in the follow-
ing way. We construct a graph G ′ = (V ′,E ′) such that

G ′ is a copy of graph G plus a chain of |V | vertices whose a unique vertex
of this chain is neighbour of u.

This transformation is done in polynomial time (we have just copied the graph
G by adding a vertex and some edges).

It is easy to prove that there exists some Hamiltonian chain in G if and only if

there exists a Hamiltonian chain in G ′ of length |V ′|
2 .
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So the problem HAMILTONIAN CHAIN reduces to the problem CHAIN; and the
latter is hence NP-complete.

Exercice 13.6 (page 214). The problem TREE is NP-complete. It suffices to observe
that an Hamiltonian path is a covering tree with two leaves.

Exercice 13.7 (page 215).
Point 1.: Let S be a vertex cover of graph G . One needs to prove that all the

vertices of the graph are either neighbours of S or in S in the graph G ′.

1. As all the edges of G have at least one of their extremities in S, all the vertices
of G ′ corresponding to some edge of G are neighbours of S.

2. Let v be a vertex of V . If v does not belong to S, then v has at least an extremity
of some edge (since G is connected). Since S is a vertex cover of graph G this
implies that the other extremity of this edge is in S. So v is a neighbour of a
vertex of S. Consequently, all the vertices of G are either in S or are neighbour
of S.

So S is a dominating set of G ′.
Point 2.: Suppose that S′ ⊆V . S′ dominates the graph G ′. This means that all the

edges of G have one of its extremities in S′. So S′ is a vertex cover of graph G .
Suppose that S′ is not a subset of V . There exists a vertex s not belonging to V in

S′. Then s is a vertex representing an edge (u, v) in graph G .

• If the two vertices u and v are in S′, then S′\{s} is a dominant set of G ′ of car-
dinality smaller than S′.

• If one of the two vertices u and v are in S′, then S′\{s}∪ {u, v}is a dominant set
of G ′ of same cardinality as S′.

We repeat the same reasoning on this set until all the vertices not belonging to V are
suppressed.

Point 3: Inputs : a non-oriented graph G , and an integer k
Question : Does there exist a dominant set S of G such that |S| ≤ k ?

Point 4: One can check in polynomial time if a set of vertices is a dominant set
and it is of cardinality less than k.

Point 5. It suffices to combine previous questions.

Exercice 13.8 (page 216). Point 1. Given a subset of vertices of K , one can check in
polynomial time

1. if S of of cardinality less than k;

2. if, for every vertex v of V , its distance to one of the vertices of S is less than b.

Point 2. We will do the reduction from the problem DOMINANT. Let I be an
instance of the minimum dominant: G = (V ,E) and some integer k ′.

We construct the instance of problem k-CENTRES : k ′ = k and the complete
graph K = (V ,E ′) with the following weight function on the edges:
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w(u, v) =
{

1 i f (u, v) ∈ E ;
2 i f (u, v) ∉ E .

This reduction can be done in polynomial time and it satisfies the following
properties:

• If there exists a dominant set of size less than k in G then K admits a k-center
of cost 1.

• If there exists a dominant set of size more than k in G then K admits a k-center
of cost 2.

We can deduce that there exists a dominant set of size less than k in G if and only
if K admits a k-center of cost 1.

Chapter 14

Exercice 14.1 (page 225). We now that NP ⊆ PSPACE. We must prove the reverse
inclusion. One considers SAT in PSPACE, that is NP-complete. It is hence NP-hard,
and hence also PSPACE-hard. So for every language A PSPACE, A reduces to SAT,
and since SAT ∈ NP, we have A in NP.

15.1 Bibliographic notes

Several corrections are shamefully taken from [Arnold & Guessarian, 2005] for the
first chapter. Some others are inspired from results proved in book [Cori & Lascar, 1993a]
or from book [Kleinberg & Tardos, 2006], or exercises from [Sipser, 1997].

%chapitreSolutions de certains exercicescorrectionschapquatorze
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Cartesian product, 11

of a family of sets, 11
CE, 138, 148
certificate, 187, 197, 200
chromatic number, 210
Church-Turing thesis, 102, 127
circuit, 14
CIRCUIT HAMILTONIAN, 188
clause, 56
CLIQUE, 206
clique of a graph G = (V ,E), 201
closed, 20, 59, 61

term, 67
tree, 59

closure
property, 141, 142
universal closure of a first order for-

mula, 77
coherent

theory, 93
COLORABILITY, 183
colouring of a graph, 182, 183, 192, 210
compactness theorem, 45

of predicate calculus, 99
of propositional calculus, 44, 45

complement, 10
of the halting problem of Turing ma-

chines, 143
complete

system of connectors, 39, 40
theory, 96

complete system of connectors, 40
completeness, 50, 148, 187

functional of propositional calculus,
40

of a theory, 83, 91
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of propositional calculus, 63
of propositional calculus, by tableau

method, 63
of propositional logic, 57
of propositional logic, for natural de-

duction proof, 55
of propositional logic, for proof by

resolution, 57
theorem, see completeness theorem

completeness theorem, 55, 83, 91, 92
of predicate calculus, 83, 92
of propositional calculus, 50
of propositional logic, for proof by

modus ponens, 53
complexity, 117, 169

asymptotic, 175
of a problem, 172
of an algorithm, 171

compositional, 38
compositionality of equivalence, 39
computability, 117, 129, 169
computable, 143, 154, 156

function, see function computable,
143, 154

in polynomial time, 184
computably enumerable, 138, 141
computation

of a Turing machine, 107
time, 169, 179

concatenation, 13
conclusion of a deduction rule, 21
configuration of a Turing machine, 104,

105
accepting, 105
initial, 105
initial,notation, see C [w]
rejecting, 105

conjunction, 35
notation, see ∧

conjunctive normal form, 55
connected, 15
consequence, 44, 91

semantic, 55, 91
notation, see |=

consistence
of a set of formulas, 44, 83

synonym: has a model, see also model
of a theory, see consistence of a set

of formulas
consistent

theory, 167
constant, 25, 66

symbols, 66
constructible

in time , see time constructible func-
tion

space, see space constructible func-
tion

contradictory
contradictory: consistent, see consis-

tency
synonym: inconsistent, see inconsis-

tent
Cook-Levin theorem, 190
correspondence, 149
countable, 15
counter machine, 124
covering subset, 201
cut

synonym: modus ponens, see modus
ponens

rule, 50

D, 135, 138
data bases, 65
decidable, 49, 135, 136, 140, 144

contrary: undecidable, see undecid-
able

decide, 107
decided, see language
decision problem, 133
decomposition tree, 69
deduction rule, 21, 50
definition

inductive, 20, 30
various notations, 21

non-ambiguous, 29
degree of a vertex, 14
degree of non-determinism, 133
demonstration, 49, 50, 92

a la Frege and Hilbert
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synonym: by modus ponens, see
demonstration by modus ponens

by modus ponens, 51, 93, 94
by resolution, 56
by tableau method, 62
in natural deduction, 55

derivation, 27, 29
developed, 61
diagonalisation method, 15, 137
dichotomic search, 170
disjunction, 33, 35

notation, see ∨
disjunctive normal form, 79
domain, 72

of a structure
synonym: base set, see base set of

a structure
of an application, 11

double implication, 35
notation, see ⇔

edges, 14
efficient, 169, 180, 181, 184

algorithm, 180
elementary measure, 170

notation, see µ(A ,d)
empty

word, 12
encoding

of a Turing machine, 130
enumerable, 141
equality, 86, 87
equivalence, 35, 38

between formulas, 77
notation, see ≡

between problems, 144, 187, 191
logical

synonym: double implication, see
double implication

exclusive middle, 55
explicit definition, 19
EXPSPACE, 225
EXPTIME, 199
extension

of a theory, 97, 98
Skolem, see Skolem extension

F , 66
false, 33, 35, 74, 75
family of elements of a set, 11
field, 11

algebraically closed, 88
commutative, 88

finiteness theorem, 94
first order logic, 65
first principle of induction, 18
fix point theorem, 20, 28, 151, 152

first theorem, 20
second theorem, 28

formula, 66, 68
atomic, see atomic formula
closed, 71

valid, 77
in prenex normal form, 78
of predicate calculus, 68
propositional, 33
refutable by tableau method, 64
universal, 81
valid, 77

free, see occurrence or variable
tree, 23
variable, 70–72, 77

function
space constructible, see space con-

structible function
computable, see computable func-

tion
defined inductively, 30
symbols, 25, 66
time constructible, see time constructible

function
total, see total function

Functional completeness, 40

generalisation rule, 93
GEOGRAPHY, 218
Gödel incompleteness theorem, 159, 161

fixed point lemma, 165
Gödel’s proof, 166, 167
principle, 159, 161
second theorem, 167
Turing’s proof, 161

Gödel theorem
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first, 91
second, see Gödel incompleteness the-

orem
graph, 14, 84, 180

non oriented, 84
of configurations of a Turing machine,

222
representation, see adjacency list or

adjacency matrix
undirected, see undirected graph

group, 87
commutative, 87

HAMILTONIAN CIRCUIT, 187, 207
Hamiltonian circuit of a graph, 184
Hamiltonian path of a graph, 201
hard, see completeness
Henkin witness, 96–98
hereditary, 18, 26
hierarchy

space , see space hierarchy theorem
time , see time hierarchy theorem

higher order logic, 65
Hilbert’s 10th problem, 102, 149
homomorphism

between languages, 14
HP, 162
HP, 162, 163
hypothesis, 21

image
of an application, 11

implication, 35
notation, see ⇒

incompleteness, see Gödel incomplete-
ness theorem

inconsistency
of a set of formula, see contrary: con-

sistence
of a set of formulas, 44
of a theory, see inconsistency of a set

of formulas
inconsistent, 83
inductive, 17, 18

definition, 19–21, 23
proof, 18

rule, 20
steps, 20

inductively defined, 20
inefficient, 49
instance, 133

of a formula, 50
integers, 89
interpretation in a structure, 74

of a formula, 74
of a term, 73
of an atomic formula, 74

interpreted, 72
interpreter, 129, 130
intersection, 10

k-COLORABILITY, 187, 188
KNAPSACK, 211

labeled binary tree, 23
language, 12

accepted by a Turing machine, 107
non-deterministic, 116

decided by a Turing machine, 107
non-deterministic, 116, 189

recognized by a Turing machine, 107
synonym: language accepted by a

Turing machine, see language ac-
cepted by a Turing machine

Latin alphabet, 12
left sub-tree, 23
LEGAL, 163
legal window, 117, 163, 196
length, 12
letters, 12
Levin reduction, 197
literal, 41, 56, 79
locality of the notion of computation, 117
logic

first order
synonym: predicate calculus, see

predicate calculus
higher order, 65

LOGSPACE, 219
LONGEST CIRCUIT, 209
loops, 106
Lowenheim-Skolem theorem, 99
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machines
of Turing, see Turing machine
RAM, 119
RISC, 120
SRAM, 120

MAXIMAL CUT, 206
memory, 169, see memory space

space, 217
merge sort, 237
model, 49

of a formula, 36, 75
of a theory, 44, 83
standard, see standard model of the

integers
that respects equality, 87

model standard of the integers, 89
modus ponens, 50, 51, 93
monoid, 13

N, 11
NAE3SAT, 204
NAESAT, 203
natural

deduction, 50, 54
problem, 149

negation, 33
notation, see ¬

NEXPTIME, 199
NLOGSPACE, 219, 225
nodes, 14

of a graph
synonym: vertex, see vertex

non-ambiguous, 29, 30, 35
definition, 30

normal form, 41
conjunctive, 42, 79, 80
disjunctive, 41, 80
prenex, 79
Skolem, 81

NP, 188–190, 199, 200
NP, 188, 191, 194, 203
NP-completeness, 179, 190, 192–194, 203–

207, 209–212
NPSPACE, 223
NSPACE(), 218, 219, 221–223
NTIME(), 190, 221, 222

occurrence, 71
bound, 71
free, 71

open, 61
open tree in tableau method, 60, 61
optimal, 172
oriented graph, 84

P, 182, 188
parenthesised arithmetical expression, 30
partial function, 11
PARTITION, 211
path, 14
Peano arithmetic, 90, 159
polynomially verifiable, 187
positive instances, 133
Post correspondence problem, 149
Post systems, 102
power set of E , 10
predicate, 18, 26, 65

calculus, 65
prefix, 13
prenex, see formula
PRIME NUMBER, 134
primitive recursive, 154
problem, 169, 197

of decision, 184, 197
proof, 49, 102, 187

by tableau, see demonstration by tableau
method

by (structural) induction, 17, 26
by modus ponens, see demonstra-

tion by modus ponens, 51, 94
by recurrence, 18
by resolution, 50, see demonstration

by resolution, 56
proper

complexity, 220
prefix, 13
suffix, 13

propositional
formula, 49
logic, 33
variable, 33

propositional logic, 33
PSPACE, 217, 223, 225
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-completeness, 218

QBF, 218
QSAT, 218
quantifier, 65

existential, 66, 75
universal, 66, 75

quines, 151

R, 11
R>0, 11
R, 66
RAM model, 119
ranked tree, 23
RE-complete, 148
REACH, 222, 223
REACH, 134
realisation, 72

of a signature, 72
synonym: structure, see structure

realizable, 62
reasonable, 179, 180
recursion theorem, 152
recursive, 135, 154

contrary: undecidable, see undecid-
able

synonym: decidable, see decidable
definition, 17
language, 141

recursively enumerable, 138
reduction, 143, 185

Levin, see Levin reduction
reduction from A to B , 144
rejected word, 116
relation symbols, 66
resolution method, 50
resolvent, 56
resources, 169
Rice theorem, 146, 147
right sub-tree, 23
ring, 11
Robinson arithmetic, 89, 159
rule

axiom, 55
deduction, 21
elimination, 55

generalisation, 93
inductive, see inductive rule
introduction, 55

SAT, 183, 187, 188, 190, 194, 197, 203, 204
satisfaction, 74

of a formula, 36, 77, 191, 203
of a set of formulas, 44

satisfiability
of a formula, 184

satisfiable
(for a formula), see satisfiability of a

formula
(for a set formulas)

contrary: inconsistent, see incon-
sistency

synonym: consistence, see consis-
tence

Savitch theorem, 218, 223
second order, 65
self-reducible problem, 197
semantic, 33, 35, 65, 72
semi-decidable, 138, 140

synonym: computably enumerable,
see computably enumerable

synonym: recursively enumerable, see
computably enumerable

sequent, 54
set

base set of an inductive definition,
20

closed by a set of rules
synonym: set stable by a set of rules,

see ensemble stable by a set of
rules, see set stable by a set or
rules

of words over an alphabet, 12
notation, see Σ∗

stable by a set of rules, 26
theory, 19

signature, 66, 72
simple path, 14
size, 170

of a formula, 44
Skolem functions and constants., 81
SPACE(), 217, 219, 221–223



252 INDEX

space, 217
constructible function, 224
hierarchy theorem, 224, 225

space hierarchy theorem, 225
space-time diagram, 109
specification, 83, 137
INDEPENDANT SET, 205
stable, 20

set, 205
standard model of the integers, 89, 91,

150, 159
structural induction, 18
structure, 66, 72
subformula, 35, 70
SUBSET SUM, 210
substitution, 39, 75, 76, 93

notation, see F (G/p)
successor relation between configurations,

104, 105
suffix, 13
symbols, 12
syntax, 33, 65, 66

tableau, 60, 61
method, 50, 57

tape, 102
tautology, 36, 49, 50
term, 25, 67
T h(N), 150
theorem, 49

synonym: tautology, see tautology
theory

complete, see complete
consistency, see consistency
of groups, 87
of predicate calculus, 83, 84
of the arithmetic, 150, 159

TIME(), 217, 221, 222
TIME(), 182
time

constructible function, 197
hierarchy theorem, 198, 199

total function, 11
transition function, 103
TRAVELING SALESMAN PROBLEM, 209
tree, 57

binary
labeled, 23
strict, 27

closed, see closed tree
derivation, 28
ranked, 17

true, 33, 35, 74, 75
truth value, 35, 36

of a formula, 36, 40
Turing machine, 103

encoding, see encoding of a Turing
machine

non-deterministic, 116, 133, 189
programming techniques, 110
restriction to a binary alphabet, 113
universal, 132
variants, 113
with several tapes, 114

Tychonoff theorem, 45

undecidable, 135–137, 144
undirected graph, 14
union, 10
unique reading theorem

of predicate calculus, 69
of propositional calculus, 34

universal
closure of a first order formula, 77
language, 137
Turing machine, 130, 132

V , 66
valid, 50

proof method, 53, 92
validity

of predicate calculus, 96
of propositional calculus, 50, 55, 62
of propositional calculus, by natural

deduction, 55
of propositional logic, for proof by

modus ponens, 53
of propositional logic, for proof by

resolution, 57
of propositional logic, for tableau method,

62
valuation, 35, 73
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variable, 66
bound, see bound variable
free, see free variable

verification, 137
verifier, 187, 188
VERTEX COVER, 206
vertices, 14

witness, 187
word, 12

accepted by a Turing machine, 106
empty, see empty word
rejected by a Turing machine, 106

worst case complexity, 171

Z, 11
Zermelo-Fraenkel, 200
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