
Foundations of Computer Science
Logic, models, and computations

Chapter: Computability

Course CSC_41012_EP

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of July 11, 2025

2

Computability

This chapter presents some main results of computability theory. In other words,
this chapter is devoted to understanding the power of (modern today’s) computers.
We will prove that some problems cannot be solved using a computer: The objective
is to explore the limits of computer programming.

Remark 1 In practice, one could say that in computer science, one aims to solve
problems by implementing algorithms as programs and that discussing the prob-
lems that cannot be solved by programs has only little interest. But, actually, it
is very important to understand that we will not focus on problems for which no
solution is known, but on something much stronger: We will focus on problems
for which it is (provably) impossible to produce any algorithmic solution.

Why focusing on understanding the problems that cannot be solved? First be-
cause understanding that a problem cannot be solved is useful: This means in par-
ticular that the problem must be simplified or modified in order to be solved. Sec-
ond, because all these results are culturally very interesting and provide a perspec-
tive on programming, and on limits of computational devices, or of the automation
of some tasks, such as the verification of programs.

1 Universal machines

1.1 Interpreters

A certain number of these results is the consequence of a simple fact, that has many
consequences: One can program interpreters, that is to say programs that takes as
input the description of some other program and that then simulate this program.

Example 2 A language such as Java or Python isa interprete d: A Java program
for example is compiled into some encoding that is called a bytecode. When one
wants to start this program, the Java interpreter simulates this bytecode on the
machine on which it is executed. This principle of interpretation allows a Java
program to work on numerous platforms and directly on various machines: Only
the interpreters depends on the machine on which the program is executed. This
portability is partly what historically led to the success of the Java language (and

3

4

remains true for interpreted languages such as Python).

aThe discussion here is true for early versions of Java. Now, just-in-time compilation is often
used, and this discussion is only partially true.

The possibility of programming interpreters is thus practically extremely posi-
tive.

However, it also leads to mathematical proofs of numerous negative results or to
paradoxical results about the impossibility of solving certain problems with a com-
puter, even for very simple problems, as we will see shortly.

Programming an interpreter is possible in all usual programming languages, in
particular it can be programmed using Turing machines.

Remark 3 We will not talk about Java or Python in what follows, but about pro-
grams for Turing machines. Reasoning on Java (or any other language) would
only complicate the discussion without changing the heart of the arguments.

Let us start by getting convinced that one can construct an interpreter for Turing
machines. In that context, an interpreter is called a universal!Turing machine.

1.2 Encoding Turing machines

We first need to fix a representation of programs of Turing machines. Here is a way
to do so.

Remark 4 The following encoding is only a convention. Any other encoding that
would guarantee the possibility of decoding (for example in the spirit of Lemma
7) would work and would be a valid alternative.

Definition 5 (Encoding of a Turing machine) Let M be a Turing machine on
alphabet Σ= {0,1}.

According to Definition 7.2, M is given by a 8-tuple

M = (Q,Σ,Γ,B,δ, q0, qa , qr) :

• Q is a finite set, whose elements are Q = {q0, q1, · · · , qr−1}, with the conven-
tion that q0 is the initial state, and that q1 = qa , q2 = qr ;

• Γ is a finite set, whose elements are Γ = {X1, X2, · · · , Xs }, with the conven-
tion that Xs is the blank B symbol, and that X1 is the symbol 0 of Σ, and
that X2 is the symbol 1 of Σ.

For m ∈ {←, |,→}, define 〈m〉 as follows: 〈←〉= 1, 〈|〉 = 2, 〈→〉= 3.
We can encode the transition function δ as follows: Suppose that the transi-

tion rule isδ(qi , X j) = (qk , Xl ,m): The encoding of this rule is the word 0i 10 j 10k 10l 10〈m〉
on alphabet {0,1}. Observe that for any non-null integers i , j ,k, l , there is no con-
secutive 1 in this word.

1. UNIVERSAL MACHINES 5

An encoding, denoted 〈M〉, of Turing machine M is a word on alphabet {0,1}
of the form

C111C211C3 · · ·Cn−111Cn ,

where each Ci is the encoding of one of the transition rules of δ.

Remark 6 To a given Turing machine M one can associate several encodings 〈M〉:
In particular, one can permute the (Ci)i , or the states, etc.

The only interest of this particular encoding is that it can be easily decoded: One
can easily find all the ingredients of the description of a Turing machine from the
encoding of the machine.

For example, if one wants to determine the movement m for a given transition:

Lemma 7 (Decoding the encoding) One can construct a Turing machine M with
four tapes, such that if the encoding 〈M ′〉 of a machine M ′ is put on its first
tape, 0i is put on its second tape, and 0 j is put on its third tape, M produces
on its fourth tape the encoding 〈m〉 of the movement m ∈ {←, |,→} such that
δ(qi , X j) = (qk , Xl ,m) where δ is the transition function of the machine M ′.

Sketch of proof: Construct a machine that scans the encoding of M ′ until it finds
the encoding of the associated transition, and that then reads in this encoding of this
transition the desired value of m. □

We will need to encode pairs made of the encoding of a Turing machine M and
of a word w on the alphabet {0,1}. One way to do this is to define the encoding of
this pair, denoted 〈〈M〉, w〉 , by

〈〈M〉, w〉 = 〈M〉111w,

that is to say the word obtained by concatenating the encoding of the Turing ma-
chine M , three times the symbol 1, and then the word w . Since our encoding of
Turing machines never produces three consecutive 1’s, the idea is that one can find
in the word 〈M〉111w the part which is 〈M〉 and the part which is w : In short: this
encoding guarantees that one can decode unambiguously 〈M〉 and w from 〈〈M〉, w〉.

1.3 Encoding pairs, triplets, etc. . .

We have just fixed an encoding that works for a Turing machine and a word. We now
more generally fix a way to encode two words w1 and w2 into a unique word w . In
other words, we give a way to encode an (ordered) pair of words, i.e., an element of
Σ∗×Σ∗, by a unique element (i.e. word) of Σ∗, that we will denote 〈w1, w2〉.

How to do this?
A first idea is to encode two words of Σ using a bigger alphabet, in such a way

that it is possible to reconstruct the initial words.
For example, one could encode the words w1 ∈ Σ∗ and w2 ∈ Σ∗ by the word

w1#w2 on alphabet Σ∪ {#}. A Turing machine can then easily determine both w1

and w2 from the word w1#w2.

6

One can also re-encode the obtained word one letter after the other to obtain a
way to encode two words on Σ = {0,1} by a unique word on Σ = {0,1}: For example,
if w1#w2 is written a1a2 · · ·an on alphabet Σ∪ {#}, we define 〈w1, w2〉 as the word
e(a1)e(a2) . . .e(an) where e(0) = 00, e(1) = 01 and e(#) = 10. This encoding is still
decodable: From 〈w1, w2〉, a Turing machine can decode w1 and w2.

From now, we will denote by 〈w1, w2〉 the encoding of the pair consisting of the
word w1 and of the word w2.

Observe that the coming results do not depend on the concrete encoding used
for pairs: One can hence encode a pair made of a Turing machine and of a word as
in previous section, or consider it as 〈〈M〉, w〉, that is to say the encoding of a pair
made of the encoding of the machine and of the word, indifferently.

1.4 Existence of a universal Turing machine

After these preliminary discussions, we now show that one can construct an inter-
preter, that is to say what is called a universal!Turing machine in the context of Tur-
ing machines.

Its existence is given by the following theorem:

Theorem 8 (Existence of a universal Turing machine) There exists a Turing ma-
chine Muni v such that, on input 〈〈A〉, w〉 where

1. 〈A〉 is the encoding of a Turing machine A;

2. w ∈ {0,1}∗;

Muni v simulates the Turing machine A on input w.

Proof: One can easily see that there exists a Turing machine Muni v with three
tapes such that if one puts:

• the encoding 〈A〉 of a Turing machine A on the first tape;

• a word w on alphabet Σ= {0,1} on the second;

then Muni v simulates the Turing machine A on input w by using its third tape.
Indeed, the machine Muni v simulates transition after transition the machine A

on input w on its second tape: Muni v uses the third tape to store 0q where q is
encoding the state of the Turing machine A at the transition that one is currently
simulating: Initially, this tape contains 0, the encoding of q0.

To simulate each transition of A, Muni v reads the letter X j in front of its head on
the second tape, then reads in the encoding 〈A〉 on the first tape the value of qk , Xl

and m, for the transition δ(qi , X j) = (qk , Xl ,m) of A, where 0i is the content of the
third tape. Then Muni v writes then Xl on its second tape, writes qk on its third tape,
and moves the head of the second tape according to the movement m.

To prove the result, it is then sufficient to use a Turing machine with only one
tape that simulates the previous machine with three tapes, by first decoding 〈A〉 and
w from the input. □

2. LANGUAGES AND DECIDABLE PROBLEMS 7

1.5 First consequences

Here is a first consequence of the existence of interpreters: The proof of Proposi-
tion 7.23, that is to say the proof that a non-deterministic Turing machine M can be
simulated by a deterministic Turing machine.

Proof:[Of Propositon 7.23] The transition relation of the non-deterministic ma-
chine M is necessarily of bounded degree of non-determinism: That is to say, the
number

r = maxq∈Q,a∈Γ|{((q, a), (q ′, a′,m)) ∈ δ}|
is finite (|.| denotes the size).

Suppose that for each pair (q, a), we number the choices among the transition
relation of the non-deterministic machine M from 1 to (at most) r . At this moment,
to describe the non-deterministic choices done by the machine up to time t , it is
sufficient to give a sequence of t numbers between 1 and (at most) r .

We construct a (deterministic) Turing machine that simulates the machine M
in the following way: For t = 1,2, · · · , it enumerates all the sequences of length t of
integers between 1 and r . For each of these sequences, it simulates t steps of the ma-
chine M by making the choices given by the sequence. Doing this for all sequences
simulates all potential non-deterministic choices of M . The machine stops and ac-
cepts as soon as it finds some t and a sequence such that M reaches an accepting
configuration. □

2 Languages and decidable problems

Having established the existence of a universal Turing machines (interpreter), we
will present a few additional definitions in this section.

In the rest of this chapter, we will only focus on problems whose answer is either
true or false, which will allow us to simplify the discussion, see Figure 1.

2.1 Decision problems

Definition 9 A decision problem is given by a set E, called the set of instances,
and by a subset E+ ⊆ E, called the set of the positive instances.

The question on which we will focus is development of an algorithm (when this
is possible) that decides whether a given instance is positive or not, i.e. belongs to
E+. We will formulate the decision problems systematically in the following form:

Definition 10 (N ame o f the pr obl em)

Input: An instance (that is to say an element of E).

Answer: Decide if a given property holds (that is to say if this element belongs to
E+).

For example, we can consider the following problems:

8

T RU E

F ALSE

Figure 1: Decision problems: In a decision problem, we have a property that is either
true or false for each instance. The objective is to distinguish the positive instances
E+ (were the answer is true) from negative instances E\E+ (where the property is
false).

Definition 11 (PRIME NUMBER)

Input: An integer n.

Answer: Decide if n is prime.

Definition 12 (ENCODING)

Input: A word w.

Answer: Decide if w is the encoding 〈M〉 of some Turing machine M.

Definition 13 (REACH)

Input: A triple consisting of a graph G, a vertex u and a vertex v of the graph.

Answer: Decide whether there exists a path between u and v in G.

2.2 Problems versus Languages

We interchangably use the terminology problem or language in the upcoming dis-
cussions and chapters.

Remark 14 (Problems vs Languages) This is due to the following considerations:
To a decision problem we can associate a language and conversely.

Indeed, to a decision problem we generally implicitly associate an encoding
function (for example for graphs, a way to encode the graphs) that allows encod-
ing the instances, that is to say the elements of E, by a given word on a certain
alphabetΣ. One can then see E as a subset ofΣ∗, whereΣ is this alphabet: With a
decision problem P , we associate the language L(P) defined as the set of words

3. UNDECIDABILITY 9

which encode instances of E which belong to E+:

L(P) = {w | w ∈ E+}.

Conversely, we can see any language L as a decision problem, by formulating
it as follows:

Definition 15 (Pr oblem associ ated to the l ang uag e L)

Input: A word w.

Answer: Decide if w ∈ L.

2.3 Decidable languages

We recall the notion of decidable language.

Definition 16 (Decidable language) A language L ⊂ Σ∗ is said to be decidable
if it is decided by some Turing machine.

A language or a problem that is decidable is also said to be recursive. A language
that is not decidable is said to be undecidable.

We write D for the class of languages or of problems that are decidable.
For example:

Proposition 17 The decision problems PRIME NUMBER, ENCODING and REACH
are decidable.

The proofs consists in constructing a Turing machine that decides if its input
is a prime number (respectively: the encoding of a Turing machine, or a positive
instance of REACH). We leave this as an exercise in elementary programming to our
readers.

Exercise 1 (solution on page 234) Let A be the language consisting of the
only string s where

s =
{

0 if God does not exist
1 if God exists

Is A decidable? Why? (Hint: The answer does not depend on the religious
convictions the reader).

3 Undecidability

In this section, we will prove one of the philosophically most important result in the
theory of programming: The existence of problems that cannot be decided, i.e. that
are undecidable.

10

3.1 First considerations

Observe first that this can be established easily.

Theorem 18 There exist decision problems which are not decidable.

Proof: We have seen that one can encode a Turing machine by a finite word on
alphabet Σ = {0,1}, see Definition 5. There is consequently a countable number of
Turing machines.

By contrast, there is an uncountable number of languages over the alphabet
Σ= {0,1}: Indeed, we saw in Chapter 1 that the power set of N is uncountable, using
Cantor diagonalization argument. Now, this must also be the case for the set of lan-
guages, as there is an easy bijection this latter set and power set of N: just take the
characteristic functions of the languages.

There are consequently more problems than those that can be solved by any
Turing machine. There must thus be decision problems that are not solved by any
Turing machine (and there is even an uncountable number of such problems). □

In general, a proof as the one above does not say anything about examples of
undecidable problems. Are they esoteric? Are they only of interest for theoreticians?

Unfortunately, this is not the case as even some simple and natural problems
turn out not be solvable by any algorithm.

3.2 Is this problematic?

For example, in one important undecidable problem, we are given a program and
a specification of what this program is supposed to do (for example sorting some
numbers) and one wants to check if the program matches its specification (i.e. is a
correct sorting algorithm).

We could hope that this process of verification could be automatized, that is to
say that we could design an algorithm that would test if a given program satisfies its
specification. Unfortunately, this is impossible: The general problem of verification
is undecidable, and can thus not be solved on a computer.

We will meet some other undecidable problems in this chapter. Our objective
will be to make our reader feel what types of problems are undecidable, and to un-
derstand the techniques that permit to prove that a given problem cannot be solved
algorithmically, i.e. cannot be solved by a computer.

3.3 A first undecidable problem

We will use a diagonalisation argument that is to say an argument close to Cantor’s
diagonalisation. Recall that Cantor’s diagonalisation is used to prove that the set of
subsets ofN is uncountable, see the first chapter.

Remark 19 Behind the previous argument on the fact that there is an uncount-
able number of languages on the alphabet Σ= {0,1} is already a diagonalization
argument. Here, we will do a more explicit, and more constructive diagonaliza-

3. UNDECIDABILITY 11

tion.

We call the following decision problem universal!language.

Definition 20 (Luniv)

Input: The encoding 〈M〉 of a Turing machine M and a word w.

Answer: Decide if the machine M accepts the word w.

Remark 21 One can also see this problem in the following way: We are given a
pair 〈〈M〉, w〉, where 〈M〉 is the encoding of a Turing machine M, and w a word,
and one wants to decide if the machine M accepts the word w.

Theorem 22 The problem Luniv is not decidable.

Proof: We prove the result by contradiction. Suppose that Luniv is decided by
some Turing machine A.

We are then able to construct a machine B working as follows:

• B takes as input a word 〈C〉 representing the encoding of a Turing machine C ;

• B calls the Turing machine A on the pair 〈〈C〉,〈C〉〉 (that is to say on the input
consisting of the encoding of the Turing machine C and the word w equal to
this encoding);

• If the Turing machine A:

– accepts this word, B rejects;

– rejects this word, B accepts.

By construction, and from our hypothesis, B halts on every input.
We prove now that there is a contradiction, by applying the Turing machine B on

the word 〈B〉, that is on the word encoding the Turing machine B .

• If B accepts 〈B〉, then if follows by definition of Luniv and of A, that A accepts
〈〈B〉,〈B〉〉. But if A accepts this word, B is constructed such that it rejects the
input 〈B〉. Contradiction.

• If B rejects 〈B〉, then it follows by definition of Luniv and of A, that A rejects
〈〈B〉,〈B〉〉. But if A rejects this word, B accept the input 〈B〉 by construction.
Contradiction.

□

3.4 Semi-decidable problems

While the problem Luniv is undecidable, it is semi-decidable in the following sense:

12

decidable languages

semi-decidable languages

all languages

Figure 2: Inclusions between classes of languages.

Definition 23 (Semi-decidable language) A language L ⊂ M∗ is said to be semi-
decidable if it is the set of words accepted by some Turing machine M.

Corollary 24 The universal language Luniv is semi-decidable.

Proof: To know if one must accept some input that is the encoding 〈M〉 of a Tur-
ing machine M and of a word w , it is sufficient to simulate the Turing machine M on
input w . One stops the simulation and one accepts if one detects in this simulation
that the Turing machine M reaches some accepting state. Otherwise, one simulates
M for ever. □

A language semi-decidable is also called computably enumerable (sometimes also
called recursively enumerable).

We write CE for the class of languages and decision problems semi-decidable:
See Figure 2.

Corollary 25 D⊊CE.

Proof: The inclusion follows directly from the definitions. Since Luniv is in CE and is
not in D, the inclusion is strict. □

3.5 A problem that is not semi-decidable

Let us start by establish the following fundamental result:

Theorem 26 A language is decidable if and only it it is semi-decidable and its
complement is also semi-decidable.

3. UNDECIDABILITY 13

w

M1
Accept

M2
Accept

Accept

Reject

Figure 3: Illustration of the proof of Theorem 26.

w M
Accept
Reject Accept

Reject

Figure 4: Construction of a Turing machine that accepts the complement of a decid-
able language.

Remark 27 Theorem 26 explains the terminology semi-decidable: A language
that is semi-decidable and whose complement as well, is decidable. So when a
language is semi-decidable, one half of the requirements to be decidable is in a
sense satisfied.

Proof: Direction ⇐. Suppose that L is semi-decidable as well as its complement.
There exists a Turing machine M1 which halts and accepts words of L, and a Turing
machine M2 which halts and accepts words of its complement. We construct a Tur-
ing machine M that, on a given input w , simulates in parallel1 M1 and M2, (that is
to say it simulates t steps of M1 on w , and then t steps of M2 on w , for t = 1,2, · · · ,)
until one of the two machines halts. See Figure 3. If M1 halts and accepts, the Turing
machine M accepts. If M2 does so, the machine M rejects. Obviously, the Turing
machine that we just described decides L.

Direction⇒. By definition, a decidable language is semi-decidable. By exachang-
ing the accepting state and the rejecting state in the Turing machine, its complement
is also decidable (See Figure 4) and hence is also semi-decidable. □

We now consider then the complement of the problem Luniv, that we will denote
Luniv.

1One alternative is to consider that M is a non-deterministic Turing machine that simulates in a non-
deterministic way either M1 or M2.

14

Remark 28 In other words, by definition, a word w is in Luniv if and only w is
not in Luniv, that is to say

• not of the form 〈〈M〉, w〉, for some Turing machine M,

• or of the form 〈〈M〉, w〉 but with Turing machine M that does not accept
input w.

Corollary 29 The problem Luniv is not semi-decidable.

Proof: Otherwise, by the Theorem 26, its complement, the problem Luniv, would
be decidable. □

3.6 On the terminology

A decidable language is also called a recursive language: The terminology is a refer-
ence to the notion of recursive functions, see for example the course [Dowek, 2008]
which present computability through recursive functions, or Section 7.2.

The notion of enumerable in computably enumerable is explained by the follow-
ing result.

Theorem 30 A language L ⊂ M∗ is computably enumerable if and only if one
can construct some Turing machine that outputs one after the other all the words
of language L.

Proof: Direction ⇒. Suppose that L is computably enumerable. There exists
some Turing machine A which halts and which accepts the words of L.

The set of pairs (t , w), where t is some integer, and where w is a word is count-
able. One can even get convinced easily that is effectively countable: One can con-
struct some Turing machine that produces the encoding 〈t , w〉 of all the pairs (t , w).
For example, one considers a loop that for t = 1,2, · · · for ever, considers all the words
w of length or equal to t , and produces for each pair the word 〈t , w〉.

Consider a Turing machine B that for each produced pair (t , w), simulates t steps
of the machine A. If the machine halts and accepts in exactly t steps, B outputs the
word w . Otherwise B does not print anything for this pair.

A word of language L, is accepted by A at some particular time t . It will then be
printed by B when it considers the pair (t , w). By assumption, any word w produced
by B is accepted by A, and hence is a word of L.

Direction ⇐. If there is a Turing machine B which enumerates all the words of
the language L, then one can construct a Turing machine A, which, given some word
w , simulates B , and every time that B produces a word, compares this word to the
word w . If there are equal, then A stops and accepts. Otherwise, A continues.

By construction, on some input w , A halts and accepts if w is among the words
enumerated by B , that is to say if w ∈ L. If w is not among these words, by hypothe-
sis, w ̸∈ L, and hence by construction, A will not accept w . □

3. UNDECIDABILITY 15

w

A1
Accept

A2
Accept

Accept

Accept

Figure 5: Construction of a Turing machine accepting L1 ∪L2.

3.7 Closure properties

Theorem 31 The set of semi-decidable languages is closed by union and by in-
tersection: In other words, if L1 and L2 are semi-decidable, then L1 ∪ L2 and
L1 ∩L2 are.

Proof: Suppose that L1 is L(A1) for some Turing machine A1 and L2 is L(A2)
for some Turing machine A2. Then L1 ∪L2 is L(A) for the Turing machine A which
simulates in parallel A1 and A2 and which halts and accepts as soon as one of the
Turing machine A1 or A2 halts and accepts: See Figure 5.

L1 ∩L2 is L(A) for the Turing machine A which simulates in parallel A1 and A2

and which halts and accepts as soon as both Turing machines A1 and A2 halt and
accept.

□

Theorem 32 The set of decidable languages is closed by union, intersection and
complement: In other words, if L1 and L2 are decidable, then L1 ∪L2, L1 ∩L2,
and Lc

1 are.

Proof: We have already used the closure by complement. Indeed, by exchanging
the accepting state and the rejecting state of the Turing machine, the complement
of a decidable set is also decidable: See Figure 4.

It remains to prove that with the hypotheses, the languages L1 ∪L2 and L1 ∩L2

are decidable. But this is clear from the previous theorem and the fact that a set
is decidable if and only if it is semi-decidable as well as its complement, by using
Morgan’s law (the complement of a union is the intersection of the complement, and
symmetrically) and the fact that complements of decidable languages are decidable.
□

In particular, we deduce:

Definition 33 (Luniv
′
)

16

Input: The encoding 〈M〉 of a Turing machine M and a word w.

Answer: Decide if the machine M does not accept the word w.

Corollary 34 The problem Luniv
′

is undecidable.

Proof: Luniv is the union of Luniv
′

and of the complement of ENCODING. If Luniv
′

were decidable, then Luniv would be decidable. □

4 Other undecidable problems

Having shown a first result to be undecidable, we will now obtain other undecidable
languages.

4.1 Reductions

We know two undecidable problems, Luniv and its complement. Our aim is now to
obtain some more. We will also show how to compare problems. To this end, we will
introduce the notion of reduction.

First, we generalize the notion of computable from languages and decision prob-
lems to functions.

Definition 35 (Computable function) Let Σ and Σ′ be two alphabets. A (total)
function f : Σ∗ → Σ′∗ is computable if there exists a Turing machine A working
on alphabet Σ∪Σ′, such that for all words w, A on input w, halts and accepts,
with f (w) written on its tape at the moment it halts.

One can see that the composition of two computable functions is computable.
This provides a way to introduce a notion of reduction between problems: The

idea is that if A reduces to B , then problem A is as least as easy as problem B , or,
if one prefers, the problem B is at least as hard than problem A. See Figure 6 and
Figure 7.

Definition 36 (Reduction) Let A and B two problems of respective alphabet ΣA

andΣB . A reduction from A to B is a computable function f :Σ∗
A →Σ∗

B such that
w ∈ A if and only if f (w) ∈ B. We write A≤mB when A reduces to B, i.e., there is
a reduction from A to B.

Reductions, as defined above, behave as we would like: A problem is at least as
easy (and hard) as itself, and the relation “is at least as easy as” is transitive. In other
words:

Theorem 37 ≤m is a preorder:

1. L≤mL;

4. OTHER UNDECIDABLE PROBLEMS 17

Instance of

problem A
f Instance of

problem B
Algorithm yes

no

Figure 6: Reduction of problem A to problem B . If one can solve the problem B ,
then one can solve the problem A. The problem A is consequently at least as easy as
problem B , denoted by A ≤m B .

T RU E

F ALSE

T RU E

F ALSE

Problem A Problem B

Figure 7: A reduction transforms the positive instances to positive instance,s and
negative instances to negative instances.

18

2. L1 ≤m L2, L2 ≤m L3 implies L1 ≤m L3.

Proof: Consider the identity function as function f for the first point.
For the second, suppose that L1 ≤m L2 via the reduction f , and that L2 ≤m L3 via

the reduction g . We have x ∈ L1 if and only if g (f (x)) ∈ L2. It is then sufficient to see
that g ◦ f , being the composition of two computable functions is computable. □

Remark 38 The reduction relation ≤m is not an order, since L1 ≤m L2, L2 ≤m L1

does not imply L1 = L2. It is actually rather natural to introduce the following
concept: Two problems L1 and L2 are equivalent, denoted L1≡L2, if L1 ≤m L2

and L2 ≤m L1.

Intuitively, if a problem is at least as easy as a decidable problem, then it is de-
cidable. We show this here formally:

Proposition 39 (Reduction) If A ≤m B, and if B is decidable then A is decidable
.

Proof: A is decided by the Turing machine that, on a given input w , computes
f (w), and then simulate the Turing machine that decides B on input f (w). Since we
have w ∈ A if and only if f (w) ∈ B , the Turing machine behaves correctly. □

Proposition 40 (Reduction) If A ≤m B, and if A is undecidable, then B is unde-
cidable.

Proof: This is the contrapositive of the previous proposition. □

4.2 Some other undecidable problems

Proposition 40 provides a way to obtain the undecidability proof for many other
problems.

As a first example, it is not possible to determine algorithmically if a given Turing
machine halts.

Definition 41 (H al ti ng Pr oblem)

Input: The encoding 〈M〉 of a Turing machine M and some input w.

Answer: Decide if M halts on input w.

Proposition 42 The problem H al ti ng Pr oblem is undecidable.

Proof: We construct a reduction from Luniv to the halting problem: For every pair
〈〈A〉, w〉, we consider the Turing machine B defined in the following way (see Figure
8):

• B takes as input a word w ;

4. OTHER UNDECIDABLE PROBLEMS 19

w A
Accept
Reject

Accept
Loop

w

B

Figure 8: Illustration of the Turing machine used in the proof of Proposition 42.

w A
Accept Accept

u

Aw

Figure 9: Illustration of the Turing machine used in the proof of Proposition 44.

• B simulates A on w ;

• If A accepts w , then B accepts. If A rejects w , then B loops (possibly B simu-
lates A forever, if A never halts).

The function f that maps 〈〈A〉, w〉 to 〈〈B〉, w〉 is computable. Furthermore, we
have 〈〈A〉, w〉 ∈ Luniv if and only if B halts on input w , that is to say 〈〈B〉, w〉 ∈ H al ti ng Pr oblem.
□

As another example, it is not possible to decide algorithmically (that is to say by
a Turing machine, i.e. a program) if a Turing machine accepts at least one input:

Definition 43 (L;)

Input: The encoding 〈M〉 of a Turing machine M.

Answer: Decide if L(M) ̸= ;.

Proposition 44 The problem L; is undecidable.

Proof: We design a reduction from Luniv to L;: For any pair 〈〈A〉, w〉, we consider
the Turing machine Aw defined as follows (see Figure 9):

• Aw takes as input a word u;

• Aw simulates A on w ;

• If A accepts w , then Aw accepts.

20

The function f that maps 〈〈A〉, w〉 to 〈Aw 〉 is indeed computable. Furthermore, we
have 〈〈A〉, w〉 ∈ Luniv if and only if L(Aw) ̸= ;, that is to say 〈Aw 〉 ∈ L;: Indeed, Aw

accepts either all the words (and hence the associated language is not empty) if
A accepts w , or accepts no word otherwise (and hence the associated language is
empty). □

Definition 45 (L ̸=)

Input: The encoding 〈A〉 of a Turing machine A and the encoding of 〈A′〉 of a
Turing machine A′.

Answer: Determine if L(A) ̸= L(A′).

Proposition 46 The problem L ̸= is undecidable.

Proof:
We design a reduction from L; to L ̸=. We consider a Turing machine B that ac-

cepts the empty language: Take for example a Turing machine B that enters imme-
diately in a non-terminating loop. The function f that maps 〈A〉 to the pair 〈A,B〉
is indeed computable. Furthermore, we have 〈A〉 ∈ L; if and only if L(A) ̸= ; if and
only if 〈A,B〉 ∈ L ̸=. □

4.3 Rice’s theorem

The two previous results can be seen as the consequence of a very general statement
that asserts that any non-trivial property of algorithms is undecidable.

A property of semi-decidable languages is said to be non-trivial if it is not always
true or always false for Turing machines: That is to say, there is at least a Turing
machine M1 such that L(M1) satisfies P and a Turing machine M2 such that L(M2)
does not satisfy P .

Theorem 47 (Rice’s theorem) Any non-trivial property of semi-decidable lan-
guages is undecidable.

Then the following decision problem LP :

Input: The encoding 〈M〉 of a Turing machine M;

Answer: Decide if L(M) satisfies property P;

is undecidable.

Remark 48 Observe that if a property P is trivial in the above sense, LP is triv-
ially decidable: Construct a Turing machine that does not even read its input
and accepts (respectively: rejects).

4. OTHER UNDECIDABLE PROBLEMS 21

w A
Accept

B
Accept Accept

u
Start

Aw

Figure 10: Illustration of the Turing machine used in the proof of Rice Theorem.

Proof: We need to prove that the decision problem LP is undecidable.
Replacing P by its negation if needed, one can assume that the empty word does

not satisfy the property P (proving the undecidability of Lp is equivalent to proving
the undecidability of its complement). Since P is non-trivial, there exists at least one
Turing machine B whose accepted language L(B) satisfies P .

We design a reduction from Luniv to the language LP . Given a pair 〈〈A〉, w〉, we
consider a Turing machine Aw defined as follows (see Figure 10):

• Aw takes as input a word u;

• On word u, Aw simulates A on word w ;

• If A accepts w , then Aw simulates B on the word u: Aw accepts if and only if
B accepts u.

In other words, Aw accepts, if and only if A accepts w and if B accepts u. If w is
accepted by A, then L(Aw) equals L(B), and hence satisfies property P . If w is not
accepted by A, then L(Aw) =;, and hence does not satisfy property P .

The function f that maps 〈〈A〉, w〉 to 〈Aw 〉 is obviously computable. □

Exercise 2 (solution on page 235) Prove that the set of encodings of Tur-
ing machines which accepts all the words which are palindromes (possibly
accepting other words) is undecidable.

4.4 The drama of verification

From Rice’s theorem, we directly get the following:

Corollary 49 It is not possible to design an algorithm that takes as input a pro-
gram, its specification, and that determines if the program satisfies the specifica-
tion.

22

The above is true, even if the specification is fixed to a property P (as soon as the
property P is not trivial) by Rice’s theorem.

From what we have seen before, this turns out to be true even for very rudimen-
tary systems. For example:

Corollary 50 It is not possible to design an algorithm that takes as input the de-
scription of a system, its specification, and that determines if the system satisfies
its specification.

The above is true, even if the specification is fixed to a property P (as soon as the
property P is not trivial), and even for systems as simple as two counter machines
by Rice’s theorem, and the simulation results of the previous chapter.

4.5 Notion of completeness

We now introduce a notion of completeness.

Definition 51 (CE-completeness) A problem A is called CE-complete, if:

1. it is computably enumerable;

2. for every other computably enumerable problem B we have B ≤m A.

In other words, a CE-complete problem is maximal for ≤m among the problems
of class CE.

Theorem 52 The problem Luniv is CE-complete.

Proof: Luniv is semi-decidable. Now, let L be a semi-decidable language. By def-
inition, there exists a Turing machine A which recognizes L. Consider the function
f which maps w to the word 〈〈A〉, w〉. We have that w ∈ L if and only if f (w) ∈ Luniv,
and hence we obtain L ≤m Luniv. □

5 Natural undecidable problems

One can object that the previous problems, relative to algorithms are “artificial” in
the sense that they are talking about properties of algorithms, the algorithms have
been in turn defined by the theory of computability.

It is difficult to define formally what one would like to call a “natural problem”,
but one can say that a problem that has been discussed before the invention of com-
putability theory is (more) natural.

5.1 Hilbert’s tenth problem

This is clearly the case of Hilbert’s tenth problem, identified by David Hilbert as one
of the most interesting problems for the 20th century in 1900: Can we determine if a
given polynomial equation with integer coefficients has an integer solution?

5. NATURAL UNDECIDABLE PROBLEMS 23

Definition 53 (Hi l ber t ′s 10th pr oblem)

Input: A polynomial P ∈N[X1, · · · , Xn] with integer coefficients.

Answer: Decide if P has an integer root

Theorem 54 The problem Hi l ber t ′s 10th pr obl em is undecidable.

The proof of this result, due to Matiyasevich [Matiyasevich, 1970] (extending
statements from Davis, Putnam and Robinson) is beyond the ambition of this doc-
ument.

5.2 The Post correspondence problem

The proof of the undecidability of Post correspondence problem is easier, even if
we will not give it here. One can consider this problem as a natural problem, in
the sense that it is not making a (direct) reference to the notion of algorithms, or to
Turing machines.

Definition 55 (Post correspondence problem)

Input: A sequence (u1, v1), · · · , (un , vn) of pairs of words on alphabet Σ.

Answer: Decide if this sequence admits a correspondence, that is to say a sequence
of indexes i1, i2, · · · , im of {1,2, · · · ,n} such that

ui1 ui2 · · ·uim = vi1 vi2 · · ·vim .

Theorem 56 The problem Post correspondence problem is undecidable.

5.3 Decidability/Undecidability of theories in logic

We have already presented in Chapter 6, the axioms of Robinson arithmetic and the
axioms of Peano: One expects these axioms to be true on the integers, that is to say in
the standard model of the integers where the base set is the integers, and where + is
interpreted by addition, ∗ by multiplication, and s(x) is interpreted by the function
that maps x to x +1.

Given some closed formula F on the signature that contains the symbols of arith-
metic, F is either true or false on the the integers (that is to say in the standard model
of the integers). Let’s call theory!of the arithmetic the set T h(N) of closed formulas F
which are true on the integers.

The constructions of the previous chapter proves the following result:

24

Theorem 57 T h(N) is not decidable.

Proof: We prove in the following chapter that T h(N) is not computably enumer-
able. It is then sufficient to observe that a decidable set is computably enumerable
to obtain a contradiction with assuming T h(N) decidable. □

We can prove (we will not do it) that if one considers the set of formulas written
without using the multiplication symbol, then the associated theory is decidable.

Theorem 58 One can decide if a closed formula F on signature (0, s,+,=) (i.e.
the one from Peano without the multiplication symbol) is satisfied on the inte-
gers.

We also obtain the following results:

Theorem 59 Let F be a closed formula on the signature of Peano axioms. The
decision problem that consists, given F , to determine whether it can be proved
from the axioms of Peano is undecidable..

Proof: Given some pair 〈〈M〉, w〉, where M is a machine and w a word, we show
in the next chapter how to produce some closed formula γ on the signature of arith-
metic such that

〈〈M〉, w〉 ∈ HP ⇔ γ ∈ T h(N),

where HP is the complement of the halting problem of Turing machines.
But, doing so, one can check that the reasoning that is done for that can be for-

malized with Peano arithmetic and can be deduced from Peano axioms.
We consequently have actually 〈〈M〉, w〉 ∈ HP if and only if γ can be proved from

Peano axioms.
This provides a reduction from the complement of the universal problem of Tur-

ing machines to our problem: The transformation that maps 〈〈M〉, w〉 to γ is indeed
easily computable. Our problem is hence undecidable, since the first is. □

One can prove.

Theorem 60 One can decide if some closed formula F on the signature (0, s,+,=
) (i.e. the one from Peano without the multiplication symbol) is provable from
Peano axioms.

6 Fixpoint problems

The results of this section are very subtle, but extremely powerful.
Let us start by a simple version, that will help understanding the proofs.

Proposition 61 There exists a Turing machine A∗ that produces its own algo-
rithm: It outputs 〈A∗〉.

6. FIXPOINT PROBLEMS 25

In other words, it is possible for a program to write its own code.
This is true in any programming language which is equivalent to Turing ma-

chines.
In UNIX shell for example, the following program

x=’y=‘echo . | tr . "\47" ‘; echo "x=yx$y;$x"’; y=‘echo . | tr .
"\47"‘; echo "x=yx$y;$x"

produces

x=’y=‘echo . | tr . "\47" ‘; echo "x=yx$y;$x"’; y=‘echo . | tr .
"\47"‘; echo "x=yx$y;$x"

which is a command, once executed, prints its own code.
Such programs are sometimes called quines, in honor of philosopher Willard van

Orman Quine, who discussed the existence of self-reproducing programs.
Proof: We consider Turing machines which halt on every input. For two such

machines A and A′, we write A A′ for the Turing machine that is obtained by com-
posing in a sequential manner A and A′. Formally, A A′ is the Turing machine that
runs first the program of A and then when A halts with its tape set to w , runs the
program of A′ on the input w .

We construct the following machines:

1. Given a word w , the Turing machine Pr i ntw halts with the result w ;

2. For a given input w of the form w = 〈X 〉, where X is a Turing machine, the
Turing machine B produces as output the encoding of the Turing machine
Pr i ntw X , that is to say the encoding of the Turing machine obtained by com-
posing Pr i ntw and X .

We consider then the Turing machine A∗ given by Pr i nt〈B〉B , that is to say the
sequential composition of the machines Pr i nt〈B〉 and B .

Let us unfold the result of this machine: The Turing machine Pr i nt〈B〉 produces
as output 〈B〉. The sequential composition with B produces then the encoding of
Pr i nt〈B〉B , which is indeed the encoding of the Turing machine A∗. □

The recursion theorem allows self references in programing languages. Its proof
consists of extending the ideas behind the proof of the previous result.

Theorem 62 (Recursion theorem) Let t : M∗×M∗ → M∗ be a computable func-
tion. Then there exists a Turing machine R which computes a function r : M∗ →
M∗ such that for all words w

r (w) = t (〈R〉, w).

Tje statement of the Recursion Theorem is rather technical, but its use is sim-
ple. To obtain a Turing machine that obtains its own description, and use it to com-
pute, we simply need a Turing machine T which computes some function t as in
the statement, that takes as input some supplementary entry which contains the

26

description of the Turing machine. Then the recursion theorem produces a new
machine R which operates as T but with the description of 〈R〉 encoded in its code.

Proof: We use basically the same idea as before. Let T be a Turing machine that
computes a function t : T takes as input a pair 〈u, w〉 and produces as output t (u, w).

We then consider the following machines:

1. Given a word w , the Turing machine Pr i ntw takes as input a word u and halts
with the result 〈w,u〉;

2. For a given input w ′ of the form 〈〈X 〉, w〉, the Turing machine B :

(a) computes 〈〈Pr i nt〈X 〉X 〉, w〉, where Pr i nt〈X 〉X denotes the Turing ma-
chine which composes Pr i nt〈X 〉 with X ;

(b) and then gives the control to the Turing machine T .

We consider then the Turing machine R given by Pr i nt〈B〉B , that is to say the
Turing machine obtained by composing Pr i nt〈B〉 with B .

Let us unfold the result r (w) of this machine R on an input w : On the input w ,
the Turing machine Pr i nt〈B〉 produces as output 〈〈B〉, w〉. The composition with
B produces then the encoding of 〈〈Pr i nt〈B〉B〉, w〉, and gives the control to T . The
latter produces then t (〈Pr i nt〈B〉B〉, w) = t (〈R〉, w) = r (w). □

We directly obtain the followign result:

Theorem 63 (Kleene fixed point theorem) Let f be a computable function that
to every word 〈A〉 encoding a Turing machine associates a word 〈A′〉 = f (〈A〉) en-
coding a Turing machine. For conciseness, write A′ = f (A) in that case.

Then there exists a Turing machine A∗ such that L(A∗) = L(f (A∗)).

Proof: Consider a function t : M∗ × M∗ → M∗ such that t (〈A〉, x) is the result
of the simulation of the Turing machine f (A) on input x. By the previous theo-
rem, there exists a Turing machine R which computes a function r such that r (w) =
t (〈R〉, w). By construction A∗ = R and f (A∗) = f (R) have hence the same value on
w for all w . □

Remark 64 One can interpret the previous results in relation with computer viruses.
Indeed a virus is a program that aims at propagating, that is to say at self-reproducing,
without being detected. The principle of the previous proof of the recursion the-
orem is a way to self-reproduce, by duplicating its own code.

7 A few remarks

7.1 Computing on other domains

We have introduced the notion of decidable sets, computably enumerable, for the
subsets of Σ∗, and the notion of (total) computable function f :Σ∗ →Σ∗.

7. A FEW REMARKS 27

One may want to work on other domains than words over some given alphabet,
for example on the integers. In that case, on can simply consider encodings of inte-
gers by their binary expansion to come back to the case of a word on the alphabet
{0,1}.

Remark 65 One could also encode an integer for example in unary, i.e., n by an

for a letter a on some alphabet Σ with a ∈ Σ. This would not change the notion
of computable function.

In the general case, to work on some domain E , one fixes some encoding of the
elements of E in some alphabet Σ: One then says for example that a subset S ⊂
E is computably enumerable (respectively decidable) if the subset of encodings of
elements of E is computably enumerable (resp. decidable).

Similarly, a (total) function f : E → F is called computable if the function from
the encoding e ∈ E to the encoding of f (e) ∈ F is computable.

Example 66 We can encode n⃗ = (n1, . . . ,nk) ∈Nk by

〈n⃗〉 = an1+1ban2+1b · · ·ank+1

on the alphabet Σ = {a,b}. A function f : Nk → N is called computable if it is
computable with respect to this encoding.

The obtained notions of computable functions, semi-decidability, etc. do not de-
pend on the encodings, for the usual encodings (actually technically as soon as one
can go from one encoding to the other encoding in a computational way, a property
that holds for all “natural” encodings of objects, and in particular for all encodings
considered in this document).

7.2 Algebraic vision of computability

The notions of computability are sometimes introduced in an algebraic manner, by
talking about functions over the integers.

In particular, one can introduce the notion of computable partial function, which
extends the notion of computable functions to the case of non-total functions.

Definition 67 (Partial computable function) Let f : E → F be a function, pos-
sibly partial.

The function f : E → F is computable if there exists a Turing machine A
such that for any word w encoding an element e ∈ E in the domain of f , the
machine A on the input w, halts and accepts with the encoding of f (e) written
on its tape at the moment when it halts.

Of course, this notion matches to the previous notion for the case of total func-
tions.

One can characterize in a purely algebraic way the notion of computable func-
tions:

28

Definition 68 (Recursive functions) A (possibly partial) function f :Nn →N is
recursive if it is either the constant 0, or one of the functions:

• Zero : x 7→ 0 the function 0;

• Succ : x 7→ x +1 the successor function;

• Projin : (x1, . . . , xn) 7→ xi the projection functions for 1 ≤ i ≤ n;

• Compm(g ,h1, . . . ,hm) : (x1, . . . , xn) 7→ g (h1(x1, . . . , xn), . . . ,hm(x1, . . . , xn)) the
composition of the recursive functions g ,h1, . . . ,hm ;

• Rec(g ,h) the function defined by recurrence as{
f (0, x2, . . . , xn) = g (x2, . . . , xn),

f (x1 +1, x2, . . . , xn) = h(f (x1, . . . , xn), x1, . . . , xn),

where g and h are recursive.

• Min(g) the function that to (x2, . . . , xn) associates the least y ∈N such that

g (y, x2, . . . , xn) = 1

if there is one (and which is not defined otherwise) where g is recursive.

A primitive recursive function is a function that can be defined without using
the schema Min.

One can prove the following result:

Theorem 69 A function f :Nn →N is recursive if and only if it is computable by
some Turing machine.

The notion of decidability or semi-decidability can then also be defined in an
algebraic way:

Theorem 70 A subset S ⊂ N is decidable if the characteristic function of S, i.e.,

the (total) function χ : n 7→
{

1 if n ∈ S
0 if n ̸∈ S

is recursive.

Theorem 71 A subset S ⊂N is semi-decidable if the (partial) function

n 7→
{

1 if n ∈ S
undefined if n ̸∈ S

is recursive.

8. EXERCISES 29

Exercise 3 (solution on page 235) Prove these theorems.

8 Exercises

*Exercise 1 (solution on page 235) [Generalized halting problem] Let A be a de-
cidable subset of the set of encodings of Turing machines, such that all machines
of A always halt.

Then A is incomplete: There exists some (unary) total function f : N → N

computable that is not represented by any Turing machine of A.
Explain why this result implies the halting problem.

Exercise 4 (solution on page 235) Let E ⊂N be a computably enumerable
set enumerated by some computable function f strictly increasing. Prove
that E is decidable.

Exercise 5 (solution on page 236) Deduce that any infinite computably
enumerable set ofN contains some infinite decidable subset.

Exercise 6 (solution on page 236) Let E ⊂N be a decidable set. Prove that
it can be enumerated by some computable function f strictly increasing.

Exercise 7 (solution on page 236) Let A ⊂N2 be a decidable set of pairs of
integers.

Write ∃A for the (first) projection of A, that is to say the subset of N de-
fined by

∃A = {x|∃y ∈N such that (x, y) ∈ A}.

1. Prove that the projection of a decidable set is computably enumer-
able.

2. Prove that any computably enumerable set is the projection of some
decidable set.

30

Exercise 8 A real number a is called computable if there exist computable
functions F and G fromN toN such that for any n > 0 we have G(n) > 0 and∣∣∣∣|a|− F (n)

G(n)

∣∣∣∣≤ 1

n
.

1. Prove that any rational number is computable.

2. Prove that
p

2, π, e are computable.

3. Prove that any real number 0 < a < 1 is computable if and only there
exists a computable radix 10 expansion of a, that is to say a com-
putable function H :N→N such that for all n > 0 we have 0 ≤ H(n) ≤
9 and

|a| =
∞∑

n=0

H(n)

10n .

4. Prove that the set of computable reals is a countable sub-field of R,
such that any polynomial of odd degree has a root.

5. Give an example of a non-computable real.

Exercise 9 A “useless” internal state of a Turing machine is a state q ∈ Q
in which the machine never enters on any input. Formulate the problem
to decide whether a given Turing machine has a useless state as a decision
problem, and prove that it is undecidable.

Exercise 10 (solution on page 236) Consider the following decision prob-
lem: A Turing machine A is given, and one wants to determine

1. if L(A) contains at least two distinct words

2. if L(A) is empty

Is the problem decidable? semi-decidable?

9 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest read-
ing the books [Sipser, 1997] and[Hopcroft & Ullman, 2000] in English, or [Wolper, 2001],
[Stern, 1994] [Carton, 2008] in French.

The book [Sipser, 1997] is very pedagogical.

9. BIBLIOGRAPHIC NOTES 31

Bibliography This chapter contains some standard results from computability. We
used essentially their presentation in [Wolper, 2001], [Carton, 2008], [Jones, 1997],
[Kozen, 1997], [Hopcroft & Ullman, 2000], as well as in [Sipser, 1997].

Index

L;, 19
L ̸=, 20
≡, 18
≤m , 16, 22
〈〈M〉, w〉, 5
〈M〉, 5
〈m〉, 4
〈w1, w2〉, 5, 6

bytecode, 3

CE, 12, 22
closure

property, 15
complement

of the halting problem of Turing ma-
chines, 16

completeness, 22
computability, 3
computable, 16, 27, 30

function, see function computable,
16, 27

computably enumerable, 12, 14
correspondence, 23

D, 9, 12
decidable, 9, 10, 12, 18

contrary: undecidable, see undecid-
able

decision problem, 7
degree of non-determinism, 7
diagonalisation method, 10

encoding
of a Turing machine, 4

enumerable, 14
equivalence

between problems, 18

fix point theorem, 24–26
function

computable, see computable func-
tion

Hilbert’s 10th problem, 22, 23

instance, 7
interpreter, 3, 4

natural
problem, 22, 23

positive instances, 7
Post correspondence problem, 23
PRIME NUMBER, 7
primitive recursive, 28

quines, 25

RE-complete, 22
REACH, 8
recursion theorem, 25
recursive, 9, 28

contrary: undecidable, see undecid-
able

synonym: decidable, see decidable
language, 14

recursively enumerable, 12
reduction, 16
reduction from A to B , 16
Rice theorem, 20

semi-decidable, 12, 13
synonym: computably enumerable,

see computably enumerable
synonym: recursively enumerable, see

computably enumerable

32

INDEX 33

specification, 10
standard model of the integers, 23

T h(N), 23, 24
theory

of the arithmetic, 23
Turing machine

encoding, see encoding of a Turing
machine

non-deterministic, 7
universal, 6

undecidable, 9, 10, 18
universal

language, 11
Turing machine, 4, 6

verification, 10

34 INDEX

Bibliography

[Carton, 2008] Carton, O. (2008). Langages formels, calculabilité et complexité.

[Dowek, 2008] Dowek, G. (2008). Les démonstrations et les algorithmes. Polycopié
du cours de l’Ecole Polytechnique.

[Hopcroft & Ullman, 2000] Hopcroft, J. E. & Ullman, J. D. (2000). Introduction to Au-
tomata Theory, Languages and Computation, Second Edition (2nd ed.). Addison-
Wesley.

[Jones, 1997] Jones, N. D. (1997). Computability and complexity - from a pro-
gramming perspective. Foundations of computing series. MIT Press. https:
//doi.org/10.7551/mitpress/2003.001.0001

[Kozen, 1997] Kozen, D. (1997). Automata and computability. Springer Verlag.
https://doi.org/10.1007/978-1-4612-1844-9

[Matiyasevich, 1970] Matiyasevich, Y. (1970). Enumerable sets are diophantine.
Doklady Akademii Nauk SSSR, 191(2), 279–282.

[Sipser, 1997] Sipser, M. (1997). Introduction to the Theory of Computation. PWS
Publishing Company.

[Stern, 1994] Stern, J. (1994). Fondements mathématiques de l’informatique. Edi-
science International, Paris.

[Steyaert,] Steyaert, J.-M. Théorie des automates, langages formels, calculabilité.
Cours de l’Ecole Polytechnique, Cours de l’Ecole Polytechnique.

[Wolper, 2001] Wolper, P. (2001). Introduction à la calculabilité: cours et exercices
corrigés. Dunod.

35

https://doi.org/10.7551/mitpress/2003.001.0001
https://doi.org/10.7551/mitpress/2003.001.0001
https://doi.org/10.1007/978-1-4612-1844-9

	Universal machines
	Interpreters
	Encoding Turing machines
	Encoding pairs, triplets, etc…
	Existence of a universal Turing machine
	First consequences

	Languages and decidable problems
	Decision problems
	Problems versus Languages
	Decidable languages

	Undecidability
	First considerations
	Is this problematic?
	A first undecidable problem
	Semi-decidable problems
	A problem that is not semi-decidable
	On the terminology
	Closure properties

	Other undecidable problems
	Reductions
	Some other undecidable problems
	Rice's theorem
	The drama of verification
	Notion of completeness

	Natural undecidable problems
	Hilbert's tenth problem
	The Post correspondence problem
	Decidability/Undecidability of theories in logic

	Fixpoint problems
	A few remarks
	Computing on other domains
	Algebraic vision of computability

	Exercises
	Bibliographic notes

