
Foundations of Computer Science
Logic, models, and computations

Chapter: A few other models of computation

Course CSC_41012_EP

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of August 20, 2024



2



A few other models of
computation

1 RAM

The Turing machine model may seem extremely rudimentary. However, it is in fact
extremely powerful, and it is able to capture the notion of computability in computer
science.

The objective of this chapter is to argue the following Church-Turing thesis: Ev-
ery computation that can be programmed by a digital computational device, such
as a modern computer, can be simulated by a Turing machine. In order to make this
plausible, we will introduce first a model very close (actually the closest that I know)
to the way that today’s computers work: The RAM model.

1.1 RAM model

The model of the RAM (Random Access Machine) is a computational model that is
close to today’s machine languages, and the way the processors of today work.

A RAM has registers that each contain a natural number (null when initialized,
i.e. if not yet used). The machine is assumed to have infinitely many registers, in-
dexed by integers. The authorized instructions depend of the processor that one
wants to model1 but in general they include the following:

1. copying the content of a register into another;

2. doing indirect addressing: Get/Write the content of a register whose index is
given by the value of some other register;

3. doing some very basic elementary operation on some particular register such
as for example adding 1, subtract 1 or test equality to 0 of a register;

4. doing some other operation on a or several register(s), for example addition,
subtraction, multiplication, division, binary shifts or bitwise binary opera-
tions.

1And actually, also of the reference book that one takes to formally describe the model.

3



4

In the following, we will limit the discussion to the SRAM (Successor Random
Access Machine) model that only has instructions of type 1., 2. and 3. We will see later
that this does not really change things, as long as each of the allowed operations of
type 4. can be simulated by a Turing machine (and this is the case for all operations
mentioned above).

1.2 Simulation of a RISC machine by a Turing machine

We are going to show that any (S)RAM can be simulated by a Turing machine.
To help the understanding of the proof, we will reduce the set of instructions of

the RAM to a reduced set of instructions (RISC reduced instruction set) by using a
unique register x0 as an accumulator.

Definition 1 A RISC machine is a (S)RAM whose instructions are (only) of the
form:

1. x0 ← 0;

2. x0 ← x0 +1 ;

3. x0 ← x0 ⊖1 ;

4. if x0 = 0 then go to instruction number j ;

5. x0 ← xi ;

6. xi ← x0 ;

7. x0 ← xxi ;

8. xx0 ← xi .

Clearly, every SRAM program with instructions of type 1., 2. and 3. can be con-
verted to an equivalent RISC program, by replacing every instruction by instruc-
tions that do the equivalent operation by systematically using the accumulator x0 (if
needed).

Example 1 For example: the instruction xi ← x j can be replaced by the two in-
structions x0 ← x j and then xi ← x0.

We will start with the following simulation:

Theorem 1 Every RISC machine can be simulated by a Turing machine.

Proof: We describe how to construct a Turing machine that simulates the RISC
machine. The Turing machine has 4 tapes. The first two tapes are encoding the pairs
(i , xi ) for xi non null. The third tape encodes the accumulator x0 and the fourth tape
is used as a scratch tape.



1. RAM 5

More concretely, for every integer i , denote by 〈i 〉 its binary representation. The
first tape encodes a word of the form

.. .BB〈io〉B〈i1〉 · · ·B . . .〈ik〉BB · · · .

The second tape encodes a word of the form

.. .BB〈xio 〉B〈xi1〉 · · ·B . . .〈xik 〉BB · · ·

The heads of the first two tapes are on the second B. The third tape encodes 〈x0〉,
the head being at the left. We call this position of the heads the standard position.

The simulation is described for three examples. The reader will find it easy to
complete the other cases:

1. x0 ← x0 +1 : We increment the content of the third tape which by convention
contains the binary encoding of x0. To do so, the head of tape 3 moves right
until it reads a B symbol. It then moves left once. It then replaces the 1’s by
by 0’s, while moving to the left as long as as it reads 1’s. When a 0 or a B is
found, it is changed into a 1 and the head moves left until it comes back to the
standard position.

2. x23 ← x0 : The heads scan the tapes 1 and 2 to the right, block by block (we call
block a word delimited by two B’s), in parallel (i.e if head of tape 1 reads block
number i , then this is true for head of tape 2 and conversely), until the head of
tape 1 (and also of tape 2) reaches the end of tape 1, or until a block B10111B
(10111 is 23 in binary) is found on tape 1.

If the end of tape 1 is reached, this means that memory position 23 has never
been seen previously. One adds it by writing 10111 at the end of tape 1, and
one copies the content of tape 3 (the value of x0) onto tape 2. Afterwards, all
heads are moved back to the standard position.

Otherwise we have found B10111B on tape 1. By construction, the head of
tape 2 then points at the B after 〈x23〉. In that case, we must modify the part of
tape 3 containing 〈x23〉 which is done in the following way:

(a) One copies the content at the right of the head of tape 2 onto tape 4.

(b) One overwrites the content of x23 on tape 2 by the the content of tape 3
(the value of x0).

(c) One writes B, and one copies the content of tape 4 at the right of the head
of tape 2, in order to restore the rest of tape 2.

(d) One returns to the standard position.

3. x0 ← xx23 : Starting from the left of tapes 1 and 2, one scans the tapes 1 and 2
going to the right, block by block, in parallel, until one reaches the end of tape
1, or a block B10111B (10111 is 23 in binary) is read.

If the end of tape 1 has been reached, one does nothing, since x23 values 0 and
tape 3 already contains 〈x0〉.



6

a

b

b

a

a

a

q3

b

b

c

c

c

a

Figure 1: A machine with 3 stacks.

Otherwise, this means that we found B10111B on tape 1. One then reads 〈x23〉
on tape 2, that one copies on tape 4. As above, one scans tapes 1 and 2 in
parallel until one finds B〈x23〉B or the end of tape 1 is reached. If the end of
tape 1 is reached, then one writes 0 on tape 3, since xx23 = x0. Otherwise, one
copies the block corresponding to tape 2 on tape 3, since the block on tape 2
contains xx23 , and one returns to the standard position.

□

1.3 Simulation of a RAM by a Turing machine

Let us come back to the fact that we have reduced the set of possible operations of
an SR AM to instructions of type 1., 2. and 3. In fact, it is easy to see that one can deal
with all instructions of type 4., as long as the underlying operation can be computed
by a Turing machine: Every operation x0 ← x0 ‘‘operation’’ xi can be simulated as
above, as soon as “operation” corresponds to some computable operation.

2 Rudimentary models

The Turing machine model is extremely rudimentary. It turns out that one can con-
sider models that are even more rudimentary, and that are still able to simulate
them.

2.1 Machines with k ≥ 2 stacks

A k-stack machine, has k stacks r1, r2, . . . ,rk . Each of this stacks corresponds to some
stack of elements of the finite alphabet Σ. The instructions of the machine permit
only to push a symbol on one of the stacks, read the symbol at the top of a stack, or
pop the symbol at the top of stack.

If one prefers, one can see each stack ri of elements of the finite alphabet Σ as a
word wi over alphabet Σ. Pushing (written push(i , a)) a symbol a ∈ Σ on this stack



2. RUDIMENTARY MODELS 7

m

o

c

p

u

t

e

r

q

Figure 2: The Turing machine from Example 7.3 seen as a 2-stacks machine.

consists in replacing wi by awi . Reading (written a ← top(r, i )) the symbol at the
top of this stack consists in reading the first letter of wi . Doing a pop on (written
pop(i )) this stack consists in deleting the first letter of wi .

Theorem 2 Every Turing machine can be simulated by a 2 stacks machine.

Proof: According to the formalization of Page 104, a configuration of a Turing
machine corresponds to C = (q,u, v), where u and v denote the content respec-
tively on left and on right of the head of tape i . One can see u and v as stacks: See
Figure 2. If one reads the formalization Page 104 carefully, one sees that the oper-
ations done by the program of a Turing machine to go from configuration C to its
successor configuration C ′ coincide with operations that can be trivially coded by
push, pop, and top: One can construct a machine with 2 stacks, each stack encod-
ing u or v (the content on the right and on the left of the tape) and that simulate the
Turing machine step by step. For example, moving the head to the right, consists
in reading the top of the second stack (a ← top(2)), pushing this symbol a on the
first stack (push(1, a)), and doing a pop on the second stack (pop(2)). Moving the
head to the left, consists in reading the top of the first stack (a ← top(1)), pushing
this symbol a on the second stack (push(2, a)), and doing a pop on the first stack
pop(1). Changing the symbol in front of the head into symbol a consists in doing
a pop on the second stack (pop(2)), and then pushing symbol a on second stack
(push(2, a)). □

2.2 Counter machines

We introduce now a model even more rudimentary: A counter machine has a finite
number k of counters r1,r2, · · · ,rk , which contain natural numbers. The instructions
of a counter machine allow only to test equality of a given counter to 0, increment
a given counter or decrement a given counter. Initially all the counters are set to 0,
except for the one encoding the input.



8

Remark 1 The machine is usually considered as computing functions over the
integers, or as recognizing languages defined as subsets of the integers. If one
wants to compute over words, say words over the alphabetΣ is {0,1}, this requires
to encode words into integers, for example by considering binary expansions.

Remark 2 We consider in this document that machines either halt or loop. Re-
jection is encoded in the coming simulation by the fact that the machine does
not halt. It would be possible also to consider counter machines with Accept and
Reject instructions, to simulate in a fine way acceptance and rejection of Turing
machines.

Remark 3 This is hence a (S)RAM, but with a extremely reduced set of instruc-
tions, and with furthermore a finite number of registers.

More formally, all the instructions of a counter machine are of the following 4
types:

• Inc(c, j ): counter c is incremented and then one goes to instruction j ;

• Decr(c, j ): counter c is decremented (if non null, unchanged otherwise) and
then one goes to instruction j ;

• IsZero(c, j ,k): one tests whether counter c is 0 and one goes to instruction j if
this is the case, or to instruction k otherwise;

• Halt: the computation is halted.

Example 2 For example, the following program with 3 counters

1. IsZero(1,5,2)

2. Decr(1,3)

3. Inc(3,4)

4. Inc(3,1)

5. Halt

transforms (n,0,0) into (0,0,2n): If one starts with r1 = n, r2 = r3 = 0, then when
instruction Halt is reached, we have r3 = 2n, and all other counters set to 0.



2. RUDIMENTARY MODELS 9

Exercise 1 For every of the following conditions, describe some counters
machine that reaches instruction Halt if and only if the following condition
is true on the initial condition:

1. r1 ≥ r2 ≥ 1;

2. r1 = r2 or r1 = r3;

3. r1 = r2 or r1 = r3 or r2 = r3.

Theorem 3 Every machine with k-stacks can be simulated by a machine with
k +1 counters.

Proof: The idea is to see a stack w = a1a2 · · ·an on an alphabet Σ of size r − 1
as an integer i in basis (radix) r : Without loss of generality, we can consider Σ to
be Σ = {0,1, · · · ,r − 1}. The word w can be interpreted as the integer i = anr n−1 +
an−1r n−2 +·· ·a2r +a1.

One uses a counter i for every stack. A k+1th counter, that we will call additional
counter, is used to adjust the value of the counters and simulate every operation
(push, pop, reading the top) of one of the stacks.

Popping is replacing i by i div r , where div denotes integer division: Starting
with the additional counter set to 0, one iteratively in a loop decrements the counter
i by r (in r steps) and increments the additional counter by 1. This operation is re-
peated until counter i reaches value 0. One then copies the additional counter to
counter i : one iteratively decrements the additional counter by 1 while increment-
ing counter i by 1 until the additional counter reaches 0. At this moment, counter i
contains the correct result.

Pushing symbol a is replacing i by i ∗r +a: First, one multiplies the counter i by
r : Starting with the additional counter set to 0, one decrements the counter i by 1
and one increments the additional counter by r (in r steps) until counter i reaches
0. One then decrements the additional counter by 1 while incrementing counter i
until the former reaches 0. At this moment, one reads counter i contains i ∗ r . One
then increments counter i by a (using a incrementation operations).

Reading the top of stack i is computing i mod r , where i mod r denotes the re-
mainder of the Euclidean division of i by r : We start by moving the content of i to the
additional counter as follows. Starting with additional counter set to 0, one decre-
ments counter i by 1 and one increments the additional counter by 1. When counter
i reaches 0 one stops. One then decrements the additional counter by 1 while incre-
menting counter i until the former reaches 0. While doing this, one memorizes in
parallel the number of operations incrementations to counter i performed modulo
r in the internal state. When the loop is done, the internal state thus contains i
modulo r . □



10

Theorem 4 Every machine with k ≥ 3 counters can be simulated by a machine
with 2 counters.

Proof: Suppose first that k = 3.
The idea is to encode the three counters i , j and k by integer m = 2i 3 j 5k . One

of the counters stores this integer. The other counter is used to do multiplications,
divisions, and compute remainders modulo 2, 3, and 5.

To increment i , j or k by 1, it is sufficient to multiply m by 2, 3 or 5 by using the
techniques of the previous proof.

To test whether i , j or k = 0, it is sufficient to test whether m is divisible by 2, 3
or 5, by using the techniques of the previous proof.

To decrement i , j or k of 1, it is sufficient to divide m by 2, 3 or 5 using the
techniques of the previous proof.

For k > 3, we use the same approach, but with the first k prime numbers instead
of simply 2, 3, and 5. □

Exercise 2 Reconsider the previous exercise but by using systematically at
most 2 counters.

By combining the previous results, we obtain:

Corollary 1 Every Turing machine can be simulated by a 2 counters machine.

Remark 4 Observe that the simulation is particularly inefficient: The simula-
tion of a time t of the Turing machine requires an exponential time by a 2 counter
machine.

3 Church-Turing thesis

3.1 Equivalence of all considered models

In this chapter, we have introduced various models, and we have shown that they
can all be simulated by Turing machines, or simulate Turing machines.

Actually, all these models are equivalent in terms of what they are able to com-
pute: We already proved that Turing machines can simulate RAMs. We could also
easily prove the contrary: One can simulate a Turing machine using a RAM.

We have also shown that the counter machines and the stack machines with 2 or
more stacks can simulate Turing machines. It is easy to see that the contrary holds:
One can simulate the evolution of a stack machine or of counter machine by a Turing
machine.

Consequently, all these models are equivalent at the level of what they can com-
pute.



4. BIBLIOGRAPHIC NOTES 11

3.2 Church-Turing thesis

The equivalences we observed before and many others led to the Church-Turing
thesis, expressed historically by Alonzo Church, Alan Turing and later also formal-
ized by Stephen Kleene. This thesis states that “what is effectively calculable is com-
putable by a Turing machine”.

In this formulation, the first notion of “calculable” makes reference to a intu-
itively given notion, while the second notion of “computable” means “computable
by a Turing machine”, i.e., a formal notion.

Since it is not possible to formally capture the first notion, this is a thesis in the
philosophical sense of this term: It is not possible to prove it.

However, given two (sufficiently expressive) models, we can mathematically prove,
as we did, that everything that can be computed by the first can be simulated, and
hence computed, by the second (and conversely). This gives evidence that the no-
tion of “computable” as defined with Turing machines is matching the intuitive no-
tion of “computable” (or calculable).

While it cannot be proved, the Church-Turing thesis is widely assumed to be
true.

4 Bibliographic notes

Suggested readings To go further with all the mentioned notions in this chapter,
we suggest to read [Sipser, 1997],[Hopcroft & Ullman, 2000].

Other formalisms equivalent to Turing machines exist, in particular the notion
of recursive functions that is presented for example in [Dowek, 2008], [Stern, 1994]
or in [Cori & Lascar, 1993].

Bibliography (S)RAM is inspired by [Papadimitriou, 1994] and [Jones, 1997].



Index

Church-Turing thesis, 11
counter machine, 7

machines
RAM, 3
RISC, 4
SRAM, 4

RAM model, 3

12



Bibliography

[Cori & Lascar, 1993] Cori, R. & Lascar, D. (1993). Logique Mathématique, volume II.
Masson.

[Dowek, 2008] Dowek, G. (2008). Les démonstrations et les algorithmes. Polycopié
du cours de l’Ecole Polytechnique.

[Hopcroft & Ullman, 2000] Hopcroft, J. E. & Ullman, J. D. (2000). Introduction to Au-
tomata Theory, Languages and Computation, Second Edition (2nd ed.). Addison-
Wesley.

[Jones, 1997] Jones, N. D. (1997). Computability and complexity - from a pro-
gramming perspective. Foundations of computing series. MIT Press. https:
//doi.org/10.7551/mitpress/2003.001.0001

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley.

[Sipser, 1997] Sipser, M. (1997). Introduction to the Theory of Computation. PWS
Publishing Company.

[Stern, 1994] Stern, J. (1994). Fondements mathématiques de l’informatique. Edi-
science International, Paris.

13

https://doi.org/10.7551/mitpress/2003.001.0001
https://doi.org/10.7551/mitpress/2003.001.0001

	RAM 
	RAM model
	Simulation of a RISC machine by a Turing machine
	Simulation of a RAM by a Turing machine

	Rudimentary models
	Machines with k 2 stacks
	Counter machines

	Church-Turing thesis
	Equivalence of all considered models
	Church-Turing thesis

	Bibliographic notes

