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Models. Completeness.

We can now describe various objects, and talk about their properties. We have in-
deed all the ingredients to talk about models and theories. In this chapter, after a
few examples, we will then focus on the completeness theorem.

The basic concept is the the concept of theory.

Definition 1 (Theory) • A theory T is a set of closed formulas over some
given signature. The formulas of a theory are called the axioms of this
theory.

• A structure M is a model of the theory T if M is a model of each of the
formulas of the theory.

Definition 2 (Consistant theory) A theory is said to be consistent if it has a
model. It is said inconsistent if it is not consistent.

Of course, the inconsistent theories have less interest.

Remark 1 From a computer science point of view, one can see a theory as a spec-
ification of an object: We describe the object thanks to first order logic, i.e. thanks
to axioms that describe it.

A consistent specification (theory) is hence nothing but a theory that specifies
at least one object.

Remark 2 In this context, the question of completeness is to know if one de-
scribes correctly the object in question, or the class of objects in question: The
completeness theorem states that this is indeed the case for a consistent theory,
as long as one want to talk about the whole class of all the models of these speci-
fications.

We are going to start by giving several example of theories, in order to make our
discussion less abstract.
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1 Examples of theories

1.1 Graphs

An oriented graph can be seen as a model of the theory without any axiom over the
signature Σ= (;,;, {E }), where the relation symbol E is of arity 2: E(x, y) means that
there is an arc between x and y .

Example 1 The formula ∃y(E(x, y)∧∀z(E(x, z) ⇒ x = y)) is true in x if and only
if y is of exterior degree 1 (modulo the comment of subsection that follows about
equality).

A non-oriented graph can be seen as a model of the theory with the unique ax-
iom

∀x∀y (E(x, y) ⇔ E(y, x)), (1)

on the same signature. This axioms states that if there is an arc between x and y ,
then there is an arc between y and x and conversely.

Example 2 Here are two (non-oriented) graphs

The formula ∃x∀y(¬(x = y) ⇒ E(x, y)) is true on the first and not on the second.

1.2 Simple remarks

Remark 3 On the signature Σ = (;,;, {E }), there is no term. We hence cannot
designate any particular vertex but using some free variable, or via some quan-
tifiers.

If one wants to designate one or some particular vertex, we can add one
or several constant symbols. We can hence for example consider the signature
(V ,;, {E }) where V = {a,b,c}.

For example, the graph
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is a model of E(a,b)∧E(b,c)∧E(a,c).
But be careful, this is not the only one: The graph

is indeed also a model: The domain of a model can contains some elements that
are not corresponding to any term.

Furthermore, the interpretation of a, b or c could be the same element.

Example 3 One can sometimes avoid constants. The formula

∃x∃y∃z(¬(x = y)∧¬(y = z)∧¬(x = z)∧E(x, y)∧E(y, z)∧E(x, z)∧∀t (t = x∨t = y∨t = z))
(2)

characterizes the triangles such as the graph above (modulo the comment of the
following subsection concerning equality).

Remark 4 Be careful: All the properties cannot be expressed easily. For example,
one can prove that this is not possible to write a (first order) formula which char-
acterizes the connected graphs. Exercise: Try to write it in order to feel where the
problem is.

Remark 5 This is the presence of other models that the one that we intend to
describe, and that is sometimes unavoidable, that would be at the heart of the
difficulties about the axiomatisation of the integers.

1.3 Equality

Be careful,the previous discussion is not totally correct: We have used at several
times the equality symbol. The above discussion was supposing that the interpreta-
tion of equality is indeed equality.

Example 4 Actually,

is indeed a model of (2), and this is consequently perfectly false that (2) charac-
terizes the triangles.

Actually, let’s call {a,b,c,d} the vertices from bottom to top and from left to
right; we can consider the interpretation ≡ of = with a ≡ a,b ≡ b,c ≡ c,d ≡ b and
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a ̸≡ b, a ̸≡ c,b ̸≡ c. Such a model satisfies indeed (2). However, ≡, the interpre-
tation of = is not the equality. Observe that we have an edge between a and b,
b = d that is true, but no edge between a and d.

To make the above discussion fully correct, we can add a symbol = to the signa-
ture to all the examples, and add the axioms satisfied by equality.

Let R be a set of relation symbols that contains at least the symbol =.

Definition 3 (Axioms of equality) The axioms of equality for a signature Σ =
(C ,F ,R), with =∈R, are

• the axiom ∀x x = x;

• for every function symbol f ∈F of arity n, the axiom

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ f (x1, · · · , xi , · · · , xn) = f (x1, · · · , x ′
i , · · · , xn));

• for every relation symbol R ∈R of arity n, the axiom

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ (R(x1, · · · , xi , · · · , xn) ⇒ R(x1, · · · , x ′
i , · · · , xn)).

All these axioms specify that the equality is reflexive, and is preserved by the
relation and function symbols.

Exercise 1 (solution on page 208) Prove that we then necessarily have∀x∀y (x =
y ⇒ y = x).

Exercise 2 Prove that we then necessarily have for each relation symbol R ∈
R or arity n,

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ (R(x1, · · · , xi , · · · , xn) ⇔ R(x1, · · · , x ′
i , · · · , xn)).

Exercise 3 Prove that we then necessarily have for each formula F (x1, x2, . . . , xn)

∀x1 · · ·∀xi∀x ′
i · · ·∀xn(xi = x ′

i ⇒ (F (x1, · · · , xi , · · · , xn) ⇔ F (x1, · · · , x ′
i , · · · , xn)).

Exercise 4 Prove that we then necessarily have ∀x∀y∀z ((x = y ∧ y = z) ⇒
x = z).

We deduce from the two previous exercises, that = (and its interpretation) is
some equivalence relation.
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1.4 Small digression

Definition 4 A model M of a theory T over a signature with the relation symbol
= is said to respect equality if the interpretation of = in M is equality.

In other terms, the interpretation of symbol = in M is the subset {(x, x)|x ∈ M }
where M is the base set of M.

It turns out if this is not the case, and if the axioms of equality are among the
theory T , we can come back to this case.

Proposition 1 Let T be a theory with a signature Σ, with at least the symbol =
as a relation symbol, which contains the axioms of equality for Σ.

If T has a model, then T has also some model that respects equality.

Proof: We can quotient the domain M of any model M of T by the equivalence
relation that puts in the same equivalence class x and y when the interpretation of
x = y is true in M (i.e. the interpretation of =). The quotient model,that is to say the
model whose elements are the equivalence classes for this equivalence relation, is
by definition, respecting equality. □

As a consequence, a theory T has a model that respects equality if and only if the
theory plus all the axioms of equality (for the corresponding signature) has a model.

Example 5 In the example 3, the sentence should be: The models that respects
equality of the formula (2) characterize the triangles.

Or possibly: The theory made of the formula (2) and the axioms of equal-
ity (in that case ∀x x = x,∀x∀x ′∀y(x = x ′ ⇒ (R(x, y) ⇒ R(x ′, y))),∀x∀y∀y ′(y =
y ′ ⇒ (R(x, y) ⇒ R(x, y ′))))) characterize the triangles.

1.5 Groups

Let’s start by talking about groups, in group theory.

Example 6 (Group) A group is a model of the theory made of the axioms of equal-
ity and of the two formulas:

∀x∀y∀z x ∗ (y ∗ z) = (x ∗ y)∗ z (3)

∃e∀x (x ∗e = e ∗x = x ∧∃y(x ∗ y = y ∗x = e)) (4)

on the signature Σ= (;, {∗}, {=}), where ∗ and = are of arity 2.

The first property asserts that the law ∗ of the group is associative, and the sec-
ond that there is some neutral element, e, and that any element has some inverse.

Example 7 (Commutative group) A commutative group (also called an Abelian
group) is a model of the theory made of the axioms of equality and of the three
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formulas:

∀x∀y∀z x ∗ (y ∗ z) = (x ∗ y)∗ z (5)

∃e∀x (x ∗e = e ∗x = x ∧∃y(x ∗ y = y ∗x = e)) (6)

∀x∀y x ∗ y = y ∗x (7)

over the same signature.

1.6 Fields

Example 8 (Commutative field) A commutative field is a model of the theory
made of the axioms of equality and of the formulas

∀x∀y∀z (x + (y + z) = (x + y)+ z) (8)

∀x∀y(x + y = y +x) (9)

∀x(x +0 = x) (10)

∀x∃y(x + y = 0) (11)

∀x∀y∀z x ∗ (y + z) = x ∗ y +x ∗ z (12)

∀x∀y∀z ((x ∗ y)∗ z) = (x ∗ (y ∗ z)) (13)

∀x∀y (x ∗ y = y ∗x) (14)

∀x (x ∗1 = x) (15)

∀x∃y(x = 0∨x ∗ y = 1) (16)

¬1 = 0 (17)

over a signature with two symbols of constants 0 and 1, two symbols of functions
+ and ∗ of arity 2, and the relation symbol = of arity 2.

For example, R and Cwith the usual interpretation are models of these theories.
If we add to the theory the formula Fp defined by 1+ ·· · +1 = 0, where 1 is re-

peated p times, the models are the fields of characteristic p: For example, Zp , when
p is some prime integer.

If we want to describe a field of characteristic 0, we must consider the theory
made of the previous axioms, and the union of the negation of the axioms Fp for all
prime integer p.

Example 9 (Algebraically closed field) For every integer n, we consider the for-
mula Gn

∀x0∀x1 · · ·∀xn−1∃x(x0 +x1 ∗x +x2 ∗x2 +·· ·+xn−1 ∗xn−1 +xn = 0)

where the reader would have guessed that xk is x∗·· ·∗x with x repeated k times.
An algebraically closed field is a model of the theory of commutative fields

and of the union of the formulas Gn for n ∈N.
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For example, C is algebraically closed. R is not algebraically closed, since x2 +1
has no real root.

1.7 Robinson Arithmetic

We can also try to axiomatise the integers. Here is a first attempt.

Example 10 (Robinson arithmetic) Consider the signature made of the constant
symbol 0, of the unary function symbol s, and of two binary function symbols +
and ∗, and of binary relation symbols < and =.

The axioms of Robinson arithmetic are the axioms of equality and

∀x ¬s(x) = 0 (18)

∀x ∀y (s(x) = s(y) ⇒ x = y) (19)

∀x (x = 0∨∃y s(y) = x) (20)

∀x 0+x = x (21)

∀x s(x)+ y = s(x + y) (22)

∀x 0∗x = 0 (23)

∀x s(x)∗ y = x ∗ y + y (24)

(25)

The structure whose base set is the integers, and where + is interpreted by ad-
dition, ∗ by multiplication, and s(x) by x +1 is a model of this theory. We call this
model the standard model of the integers.

Observe that we can define in any model of the previous axioms some order, by
the rule x < y if and only if ∃z (x + s(z) = y).

An alternative is to take < as a primitive relation symbol of arity 2 and add the
axioms

∀x ¬x < 0 (26)

∀x 0 = x ∨0 < x (27)

∀x ∀y (x < y ⇔ (s(x) < y ∨ s(x) = y)) (28)

∀x ∀y (x < s(y) ⇔ (x < y ∨x = y)) (29)

Exercise 5 Prove that the order defined by the rule x < y if and only if ∃z (x+
s(z) = y) satisfies these formulas.
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Exercise 6 (solution on page 208) Let n and m two integers. We write sn(0)
for s(s(· · · s(0))) with s repeated n times, with the convention that s(0) = 0.

Prove by recurrence that

sn(0)+ sm(0) = sn+m(0).

Find some model of Robinson axioms where two elements a and b are
such that a +b ̸= b +a.

Deduce that Robinson axioms are not sufficient to axiomatise the inte-
gers: There are other models that the standard model of the integers to these
axioms.

Exercise 7 Add ∀x∀y(x + y = y + x) to previous axioms to guarantee the
commutativity of addition. Produce a model of the previous axioms that is
not the standard model of the integers: For example, with tow elements a
and b such that a ∗b ̸= b ∗a.

Instead of trying to add certain axioms in order to guarantee that properties such
as commutativity of addition and of multiplication, we will consider a family of ax-
ioms.

1.8 Peano arithmetic

Example 11 (Peano arithmetic) Consider a signature made of the constant sym-
bol 0, for the unary function symbol s, and of two binary function symbols + and
∗, and of binary relation symbol =.

The axioms of Peano arithmetic are the axioms of equality and

∀x ¬(s(x) = 0) (30)

∀x∀y (s(x) = s(y) ⇒ x = y) (31)

∀x (x = 0∨∃y s(y) = x) (32)

∀x 0+x = x (33)

∀x s(x)+ y = s(x + y) (34)

∀x 0∗x = 0 (35)

∀x s(x)∗ y = x ∗ y + y (36)

(37)

and the set of all the formulas of the form

∀x1 · · ·∀xn((F (0, x1, · · · , xn)∧∀x0(F (x0, x1, · · · , xn) ⇒ F (s(x0), x1, · · · , xn)))
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⇒∀x0F (x0, x1, · · · , xn)) (38)

where n in any integer, and F (x0, · · · , xn) is any formula of free variables x0, · · · , xn .

There are hence an infinity of axioms. The last axioms aims at capturing reason-
ing’s by recurrence that are usually done on the integers.

Of course, these axioms guarantee the following property: The standard model
of the integers is model of these axioms

Exercise 8 Prove that the axiom ∀x (x = 0∨∃y s(y) = x) is actually useless:
This formula is a consequence of the others.

One clear interest is that we have now:

Exercise 9 (solution on page 209) Prove that in any model of Peano ax-
ioms, the addition is commutative: The formula ∀x∀y(x+y = y+x) is true.

Exercise 10 Prove that in any model of Peano axioms, the multiplication is
commutative: The formula ∀x∀y(x ∗ y = y ∗x) is true.

In other words, this family of axioms is sufficient to guarantee a huge number of
properties that are true on the integers.

We will see later on (incompleteness theorem) that there remain some other
models than the standard integers to Peano axioms.

2 Completeness

The completeness theorem, due to Kurt Gödel, sometimes called the first Gödel the-
orem, is relating the notion of completeness to the notion of provability, by demon-
strating that the two notions are the same.

2.1 Consequences

The notion of consequence is easy to define.

Definition 5 (Consequence) Let F be a formula. The formula F is said to be a
(semantic) consequence of a theory T if any model of the theory T is a model
of F . We write in this case T |=F .

Example 12 For example, the formula ∀x∀y x ∗ y = y ∗ x, which expresses the
commutativity , is not a consequence of the theory of groups (Definition 6), since
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there are groups which are not commutative.

Example 13 We can prove that the formula ∀x 0 + x = x is a consequence of
Peano axioms.

Example 14 The exercise 6 proves that the formula ∀x∀y(x + y = y + x) (com-
mutativity of addition) is not a consequence of Robinson axioms.

2.2 Demonstration

We need to fix a notion of demonstration. We will do it, but let’s first say that we
have a notion of demonstration, such that we write T ⊢F if one can prove the closed
formula F from the axioms of theory T .

We expect at minimum from this notion of proof to be valid: That is to say to
derive uniquely consequences: If F is a closed formula, and if T ⊢ F , then F is a
consequence of T .

2.3 Statement of completeness theorem

The completeness theorem states that actually we can succeed to reach all the con-
sequences: The relations |= and ⊢ are the same.

Theorem 1 (Completness theorem) Let T be a theory over a denumerable sig-
nature. Let F be some closed formula. F is a consequence of T if and only if F is
provable from T .

2.4 Meaning of the theorem

Let’s take some time to understand what it does mean: In other words, the provable
statements are precisely those which are true in every model of the theory.

This means in particular that:

• if some closed formula F is not provable, then there must exists a model that
is not a model of F .

• if a closed formula F is true in any model of the axioms of the theory, then F is
provable.

Example 15 For example, the formula ∀x∀y x ∗ y = y ∗ x, which expresses the
commutativity, is not provable from the axioms of the theory of groups.
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Example 16 The formula ∀x 0+x = x is provable from the Peano axioms.

2.5 Other formulation of the theorem

We say that a theory T is coherent if there is no formula F such that T ⊢ F and
T ⊢¬F .

We will see while doing the proof that the following also holds:

Theorem 2 (Théorème de complétude) Let T be a theory over some denumer-
able signature. T has a model if and only if T is coherent.

3 Proof of completeness theorem

3.1 A deduction system

We need to define a notion of demonstration. We choose to consider a notion of
demonstration based on the notion of proof à la Frege and Hilbert, that is to say
based on the modus ponens.

With respect to propositional calculus, we are not using anymore only the modus
ponens rule, but also a generalisation rule: If F is a formula and if x is some variable,
the generalisation rule deduces ∀xF from F .

One ca be troubled by this rule, but this is nothing but what is regularly done in
the common reasoning: If we succeed to prove F (x) without any particular hypoth-
esis on x, then we know that ∀xF (x).

We then consider a certain number of axioms:

Definition 6 (Axiomes logiques du calcul des prédicats) The logical axioms of
the predicate calculus are:

1. every instance of the tautologies of propositional calculus;

2. the axioms of quantifiers, that is to say:

(a) the formulas of the form (∃xF ⇔ ¬∀x¬F ), where F is any formula
and x is an arbitrary variable;

(b) the formulas of the form (∀x(F ⇒ G) ⇒ (F ⇒∀xG)) where F and G
are arbitrary formulas and x is a variable that has no free occurrence
in F ;

(c) the formulas of the form (∀xF ⇒ F (t/x)) where F is a formula, t is
a term and no free occurrence of x in F is covered by some quantifier
bounding a variable of t , where F (t/x) denotes the substitution of x
by t .
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Exercise 11 Prove that the logical axioms are valid.

Remark 6 We could not have put all the tautologies of propositional calculus,
and, as we did for propositional calculus, restrict to certain axioms, essentially
the axioms of Boolean logic. We does so here only to make the proofs simpler, but
this could be possible and it would still work.

We obtain the notion of demonstration.

Definition 7 (Demonstration by modus ponens and generalisation) Let T be
at theory and let F be some formula. A proof of F from T is a finite sequence
F1,F2, · · · ,Fn of formulas such that Fn is equal to F , and for all i , either Fi is
in T , or Fi is some logical axiom, or Fi is obtained by modus ponens from two
formulas F j ,Fk with j < i and k < i , or Fi is obtained by generalisation from a
formula F j with j < i .

We write T ⊢F if F is provable from T .

3.2 Finiteness theorem

We obtain first easily through the proof the finiteness theorem.

Theorem 3 (Finiteness theorem) For every theory T , and for any formula F , if
T ⊢F , then there exists a finite subset T0 of T such that T0⊢F .

Proof: A demonstration is a finite sequence of formulas F1, F2, · · · ,Fn . Con-
sequently, it is using only a finite number of formulas, hence a finite subset T0 of
formulas of T . This demonstration is also a demonstration of F in the theory T0. □

Corollary 1 If T is a theory such that all finite subsets are coherent, then T is
coherent.

Proof: Otherwise T proves (F ∧¬F ), for some formula F , and by the finiteness
formula, we deduce that there exists a finite subset T0 of T that also proves (F∧¬F ).
□

3.3 Some technical results

We need the following results, whose proofs are coming from a game on writing and
rewriting on the demonstrations.

First of all an observation, but that has its importance:

Lemma 1 If a theory T is not coherent, then any formula is provable in T .
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Proof: Indeed, suppose that T ⊢ F and that T ⊢ ¬F , and let G be some ar-
bitrary formula. One can then put one after the other a demonstration of F and a
demonstration of ¬F . To obtain a demonstration of G , it suffices to add the follow-
ing formulas to this sequence: The tautology F ⇒ (¬F ⇒ G). The formula ¬F ⇒ G
which can then be obtained by modus ponens, since F has already appeared. Then
the formula G , which can be obtained by modus ponens, since ¬F has already ap-
peared. □

Lemma 2 (Deduction lemma) Suppose that T ∪ {F } ⊢ G, with F some closed
formula. Then T ⊢(F ⇒G).

Proof: From a demonstration G0G1 · · ·Gn of G in T ∪{F }, we construct a demon-
stration of (F ⇒G) in T by inserting in the sequence (F ⇒G0)(F ⇒G1) · · · (F ⇒Gn).

If Gi is a tautology, then there is nothing to do, since (F ⇒Gi ) is also a tautology.
If Gi is F , then there is nothing to do, since (F ⇒Gi ) is a tautology.
If Gi is an axiom of quantifiers or an element of T , then it suffices to insert 1

between (F ⇒ Gi−1) and (F ⇒ Gi ) the formulas Gi and (Gi ⇒ (F ⇒ Gi )) (which is a
tautology).

Suppose now that Gi is obtained by modus ponens: There are some integers
j ,k < i such that Gk is (G j ⇒ Gi ). We insert then between (F ⇒ Gi−1) and (F ⇒ Gi )
the formulas;

1. ((F ⇒G j ) ⇒ ((F ⇒ (G j ⇒Gi )) ⇒ (F ⇒Gi ))) (a tautology);

2. (F ⇒ (G j ⇒ Gi )) ⇒ (F ⇒ Gi ) that is obtained from modus ponens from the
previous and thanks to (F ⇒G j ) which has already appeared;

3. (F ⇒ Gi ) is then deduced by modus ponens from this last formula and from
(F ⇒ (G j ⇒Gi )), that has already appeared since it is (F ⇒Gk ).

Suppose at last that Gi is obtained by generalisation from G j with j < i . We insert
in this case between (F ⇒Gi−1) and (F ⇒Gi ) the formulas:

1. ∀x(F ⇒G j ) obtained by generalisation starting from (F ⇒G j );

2. (∀x(F ⇒G j ) ⇒ (F ⇒∀xG j )) (a quantifier axiom). F being a closed formula, x
is not free;

3. (F ⇒Gi ) is then deduced by modus ponens from the two previous.

□
The corollary that follows can be seen as the justification of reasoning by contra-

dictions.

Corollary 2 T ⊢ F if and only if T ∪ {¬F } is not coherent.

1For i = 0, it suffices to position this formula at the beginning.
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Proof: It is clear that if T ⊢ F then T ∪ {¬F } is not coherent. Conversely, if
T ∪ {¬F } is not coherent, it proves any formula, and in particular F by Lemma 1.
Now, by the deduction lemma above, we obtain that T ⊢¬F ⇒ F . Now, (¬F ⇒ F ) ⇒
F is a tautology, which proves that we have T ⊢ F . □

Lemma 3 Let T be at theory, and let F (x) be a formula whose only free variable
is x. Let c be some constant symbol that is not appearing in F nor in T . If
T ⊢ F (c/x) then T ⊢∀xF (x).

Proof: Consider a demonstration F1F2 · · ·Fn of F (c/x) in T . We consider a vari-
able w that is in none of the formulas Fi and we call Ki the formula obtained by
replacing in Fi the symbol c by w .

It turns out that this provides a proof of F (w/x): If Fi is some logical axiom, then
so does Ki ; If Fi is deduced by modus ponens, and if Fi ∈T then Ki is Fi .

By generalisation, we hence obtain a proof of ∀wF (w/x), and by the remark that
follows, we can then obtain a proof of ∀xF (x). □

Remark 7 If w is a variable that has no occurrence in F (nor free, nor bound),
then we can prove ∀wF (w/x) ⇒ ∀xF : Indeed, since w has no occurrence in
F , we can then prove ∀wF (w/x) ⇒ F , (axiom (c) of quantifiers, observing that
(F (w/x))(x/w) = F with these hypotheses). By generalisation, we obtain∀x(∀wF (w/x) ⇒
F ), and since x is not free in ∀wF (w/x), the formula ∀x(∀wF (w/x) ⇒ F ) ⇒
(∀wF (w/x) ⇒∀xF ) is among the axioms (b) of quantifiers, which allow to ob-
tain ∀wF (w/x) ⇒∀xF by modus ponens.

3.4 Validity of the deduction system

The validity of the proof method is easy to obtain.

Theorem 4 (Validity) Let T be a theory. Let F be some formula.
If T ⊢F , then any model of T is a model of the universal closure of F .

Proof: It suffices to check that the logical axioms are valid, and that modus po-
nens and generalisation can only infer some valid facts in any model of T . □

This is the easy direction of the completeness theorem.

3.5 Completeness of the deduction system

The other direction consists in proving that if F is a consequence of T , then F can
be proved by our proof method.

Definition 8

We say that a theory T is complete if for any closed formula F , we have T ⊢ F
or T ⊢¬F .

We say that a theory T admits some Henkin witnesses if for any formula F (x)
with some free variable x, there exists some constant symbol c in the signature
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such that (∃xF (x) ⇒ F (c)) is a formula of the theory T .

The proof of completeness theorem due to Henkin that we will present runs in
two steps.

1. We prove that any coherent theory, complete, with Henkin witnesses admits a
model.

2. We prove that any consistent theory admits some with these three properties.

Lemma 4 If T is some coherent, complete, with Henkin witnesses, then T has
a model.

Proof: The trick is to construct from scratch a model, whose base set (domain) is
the set M of closed terms on the signature of the theory: This domain is non-empty,
since the signature has at least the constants.

The structure M is defined in the following way:

1. If c is a constant, the interpretation cM of c is the constant c itself.

2. If f is a function symbol of arity n, its interpretation f M is the function that
to closed terms t1, · · · , tn associate the closed term f (t1, · · · , tn).

3. If R is a relation symbol of arity n, its interpretation RM is the subset of M n

made of the (t1, · · · , tn) such that T ⊢ R(t1, · · · , tn).

We observe that the structure that is obtained satisfies the following property
For any closed formula F , T ⊢ F if and only if M is a model of F . This is proved by
structural induction on F .

The property is true for the atomic formulas.
Because of the properties of the quantifiers and connectors, and because of the

possibility of using occurrences of tautologies of propositional calculus in our proof
method, it suffices to get convinced of this fact inductively on the formulas of type
¬G , (G ∨H) and ∀xG .

1. Case ¬G : Since T is complete, T ⊢ ¬G if and only if T ̸⊢ G , which means
inductively M ̸|=G , or if one prefers M |= ¬G .

2. Case (G ∨ H): Suppose M |= (G ∨ H), and so M |= G or M |= H . In the first
case for example, by induction hypothesis, we have T ⊢ G , and since (G ⇒
(G ∨ H)) is a tautology, we have T ⊢ (G ∨ H). Conversely, suppose that T ⊢
(G∨H). Si T ⊢G then by the induction hypothesisM |=G and soM |= (G∨H).
Otherwise, this is because T ̸⊢ G , and since the theory is complete, we have
T ⊢¬G . But since (G ∨H ⇒ (¬G ⇒ H)) is a tautology, we obtain that T ⊢ H
and by the induction hypothesis, M |= H and so M |= (G ∨H).

3. Case ∃xG(x): If M |= ∃xG(x) this is because there is some closed term t such
that M |= G(t/x). By induction hypothesis, T ⊢ G(t/x). But it is easy to find
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a demonstration of ∃xG(x) from a demonstration of G(t/x). Conversely, sup-
pose that T ⊢ ∃xG(x). Thanks to Henkin witnesses, we deduce that there
exists some constant c such that T ⊢ G(c/x), and by induction hypothesis
M |=G(c/x), and so M |= ∃xG(x).

□
There remains the second step. An extension of at theory T is a theory T ′ that

contains T .

Proposition 2 Every coherent theory T on a countable signature Σ has some
extension T ′ on a denumerable signature Σ′ (with Σ′ that contains Σ) that is
coherent, complete and with Henkin witnesses.

Before proving this property, let us discuss what we are obtaining: Since a model
of T ′ is a model of T , the previous lemma and the previous proposition permit first
to obtain:

Corollary 3 A denumerable coherent theory has a model.

The following remark is obtained by playing with definitions:

Proposition 3 For every theory T and for every closed formula F , F is a conse-
quence of T if and only if T ∪ {¬F } has no model.

Proof: If F is a consequence of T , then by definition every model of T is a model
of F , in other words, there is no model of T ∪ {¬F }. The converse is trivial. □

We obtain with this remark exactly the completeness theorem (or the missing
direction of what we called the completeness theorem).

Theorem 5 Let F be some closed formula. If F is a consequence of the theory T ,
then T ⊢ F .

Proof: If T does not prove F , then T ∪ {¬F } is coherent: By the previous corol-
lary, T ∪{¬F } has a model. This means that F is not a consequence of the theory T .
□

There remains to prove Proposition 2.
Proof: The signature Σ′ is obtained by adding some denumerable number of

new constants to the signature Σ. The obtained signature Σ′ remains denumerable
and we can enumerate the closed formulas (Fn)n∈N of Σ′. The theory T ′ is obtained
as the union of a increasing sequence of theories Tn , defined by recurrence, starting
from T0 = T . Suppose that Tn is constructed and coherent. To construct Tn+1

we consider the formula Fn+1 in the enumeration of the closed formulas of Σ′. If
Tn ∪Fn+1 is coherent, then we let Gn = Fn+1, otherwise we let Gn = ¬Fn+1. In the
two cases Tn ∪ {Gn} is coherent.

The theory Tn+1 is defined by:

1. Tn+1 =Tn ∪ {Gn} if Gn is not of the form ∃xH .
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2. otherwise: Tn+1 = Tn ∪ {Gn , H(c/x)} where c is a new constant symbol that
is not appearing in any formula of Tn ∪ {Gn}: There is always such a symbol,
there there is a finite number of symbols in Tn ∪ {Gn}.

The theory Tn+1 is coherent: Indeed, if it were not, this would mean that Gn

would be of the form ∃xH , and that Tn ∪{∃xH } ⊢¬H(c/x). By the choice of the con-
stant c, and by Lemma 3, we obtain that Tn ∪{∃xH } ⊢∀x¬H(x), which is impossible
since otherwise Tn would not be coherent.

The theory T ′ = ⋃
n∈NTn defined as the union of the theories Tn is coherent

since any finite subset of it is contained in one of the theories Tn , and hence is co-
herent.

The theory T ′ is also complete: If F is some closed formula of Σ′, it appears at
some moment in the enumeration of the formulas Fn , and by construction, either
Fn ∈Tn or ¬Fn ∈Tn .

Finally the theory T ′ has some Henkin witnesses: If H(x) is a formula with the
free variable x, then the formula ∃xH appears as a formula in the enumeration of the
formulas Fn . There are then two cases: either ¬Fn ∈Tn+1 or there is some constant
c such that H(c/x) ∈Tn+1. In the two cases, Tn+1 ⊢∃xH(x) ⇒ H(c/x), which proves
that (∃xH(x) ⇒ H(c/x)) is in T ′ (otherwise its negation would be there, and T ′
would not be coherent). □

4 Compactness

Observe that we have also established some other facts.

Theorem 6 (Compactness theorem) Let T a theory on some denumerable sig-
nature such that any finite subset of T has a model. Then T has a model.

Proof: Consider a finite subset of such a theory T . This subset is coherent since
it has a model. T is hence a theory such that any finite subset is coherent. By finite-
ness theorem, this means that the theory itself is coherent.

By Corollary 3, this means that T has a model. □

Exercise 12 (solution on page 209) Use compactness theorem to prove that
there exists some non-standard model of Peano axioms.

5 Other consequences

Theorem 7 (Löwenheim-Skolem) If T is a theory on some denumerable sig-
nature that has a model, then it has a model whose base set is denumerable.
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Exercise 13 (solution on page 209) Prove the theorem.

6 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
[Cori & Lascar, 1993], [Dowek, 2008] or [Lassaigne & de Rougemont, 2004].

Bibliography This chapter has been written by essentially using the books [Cori & Lascar, 1993]
and [Lassaigne & de Rougemont, 2004].
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