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Proofs

The objective of this chapter is to start to address the fundamental following ques-
tion: what is a demonstration (i.e. a (mathematical) proof ).

To to this, more precisely, we will focus on this chapter on the following problem:
Given some propositional formula F , how to decide if F is a tautology? A tautology
is also called a theorem.

This will lead us to describe some particular algorithms.

1 Introduction

A first method to solve this problem is the one that we have used in the previous
chapter: If F is of the form F (p1, · · · , pn), we can test for each of the 2n valuations v ,
i.e. for the 2n functions from {1,2, . . . ,n} to {0,1}, if v is indeed a model of F . If this
is the case, then F is a tautology. In any other case, F is not a tautology. It is easy to
program such a method in your favorite programming language.

The good news is that this method exists: The problem to determine if a given
formula is a tautology is decidable, using the terminology that we will see in the next
chapters.

Remark 1 This observation can seem strange, and, in some sense, to expect little,
but we will see that when we consider more general logic, even simple logic, this
becomes problematic: There does not always exist some algorithm to determine
if a given formula F is a tautology.

However, this method is particularly inefficient. It has the main inconvenient to
guarantee that when F is a tautology, we will do 2n times a similar test of type “is the
valuation v a model of F ?”. When n is big, 2n explodes very quickly: If this method
can indeed be programmed, it is in practise useless, since it takes a huge time, as
soon as one considers some formulas F with a high number of variables.

Let’s then come back to our problem: One can say that in the classical reasoning
in mathematics, the usual method to prove that some assertion is a theorem is to
prove it.

If one wants to do better than the previous exhaustive method, there are two
angles of attacks. The first angle of attack is to try to come close to the notion of
demonstration in the usual reasoning: Proof methods in the spirit of the coming
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sections will appear. The second angle of attack is to try to produce algorithms as
efficient as possible: Methods such as proof!by resolution method or tableau method
then appear.

In general, one expects that a proof method is always valid: It produces only cor-
rect deductions. In any case, the question of the completeness of the proof method
makes sense: Can all the theorems (tautology) be proved using this proof method?

We will see in what follows, four deductions systems that are valid and com-
plete: The proofs à la Hilbert, the natural deduction, the resolution method and
the tableau method. We will prove the validity and the completeness only for the
tableau method. Every time, we will denote by ⊢ the underlying notion of proof:
T⊢F means that the formula F can be proved starting from a set of propositional
formulas T . We write ⊢ T if ;⊢ T .

At first sight, one needs a different symbol ⊢ for each notion of demonstration.
However, the validity and completeness theorem that follow will prove that, ev-

ery time, what is provable for each notion of demonstration is exactly the same, that
is to say the tautologies of the propositional calculus.

In summary, the symbol |= and the symbol ⊢ denotes exactly the same notion:
For each of the variants of ⊢ mentioned in what follows, we have ⊢ F if and only if
|= F , that is to say if and only if F is a tautology.

2 Proofs à la Frege and Hilbert

In this deduction system, we start from a set of axioms from propositional logic, that
are tautologies, and we use a unique deduction rule, the modus ponens, also called
cut rule that aims to capture a very usual type of reasoning in mathematics.

The modus ponens states that from a formula F and from a formula F ⇒ G , we
deduce G .

Graphically:
F (F ⇒G)

G

Example 1 For example, starting from (A∧B) and from (A∧B) ⇒C we deduce
C .

We consider then a set of axioms, that are actually some instances of a finite
number of axioms.

Definition 1 (Instance) A formula F is said to be an instance of a formula G if F
is obtained by substituting certain propositional variables in G by some formulas
Fi .

Example 2 The formula ((C ⇒ D) ⇒ (¬A ⇒ (C ⇒ D))) is an instance of (A ⇒
(B ⇒ A)), by taking (C ⇒ D) for A, and ¬A for B.
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Definition 2 (Axioms of boolean logic) An axiom of Boolean logic is any in-
stance of the following formulas:

1. (X1 ⇒ (X2 ⇒ X1)) (axiom 1 for the implication);

2. ((X1 ⇒ (X2 ⇒ X3)) ⇒ ((X1 ⇒ X2) ⇒ (X1 ⇒ X3))) (axiom 2 for the
implication);

3. (X1 ⇒¬¬X1) (axiom 1 for the negation);

4. (¬¬X1 ⇒ X1) (axiom 2 for the negation);

5. ((X1 ⇒ X2) ⇒ (¬X2 ⇒¬X1)) (axiom 3 for the negation);

6. (X1 ⇒ (X2 ⇒ (X1 ∧X2))) (axiom 1 for the conjunction);

7. ((X1 ∧X2) ⇒ X1) (axiom 2 for the conjunction);

8. ((X1 ∧X2) ⇒ X2) (axiom 3 for the conjunction);

9. (X1 ⇒ (X1 ∨X2)) (axiom 1 for the disjunction);

10. (X2 ⇒ (X1 ∨X2)) (axiom 2 for the disjunction);

11. ((((X1 ∨X2)∧ (X1 ⇒C ))∧ (X2 ⇒C )) ⇒C ) (axiom 3 for the disjunction).

We obtain a notion of demonstration.

Definition 3 (Demonstration by modus ponens) Let T be a set of propositional
formulas, and F be some propositional formula. A proof (by modus ponens) of
F from T is a finite sequence F1,F2, · · · ,Fn of propositional formulas such that
Fn is equal to F , and for all i , either Fi is in T , or Fi is some axiom of Boolean
logic, or Fi is obtained by modus ponens from two formulas F j ,Fk with j < i and
k < i .

We write T⊢F if F is provable (by modus ponens) from T . We write ⊢ F if ;⊢ F ,
and we say that F is provable (by modus ponens)

Example 3 Let F,G , H three propositional formulas. Here is a proof of (F ⇒ H)
from {(F ⇒G), (G ⇒ H)}:

• F1 : (G ⇒ H) (hypothesis);

• F2 : ((G ⇒ H) ⇒ (F ⇒ (G ⇒ H))) (instance of axiom 1.);

• F3 : (F ⇒ (G ⇒ H)) (modus ponens from F1 and F2);

• F4 : ((F ⇒ (G ⇒ H)) ⇒ ((F ⇒G) ⇒ (F ⇒ H))) (instance of axiom 2.);

• F5 : ((F ⇒G) ⇒ (F ⇒ H)) (modus ponens from F3 and F4);
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• F6 : (F ⇒G) (hypothesis);

• F7 : (F ⇒ H) (modus ponens from F6 and F5).

Exercise 1 (solution on page 206) Prove (F ⇒ F ).

In the following exercises, you can use the previous exercises to solve each of the
questions.

Exercise 2 (solution on page 206) [Deduction theorem] Let T be a family
of propositional formulas, and let F and G be two propositional formulas.
Prove that T ⊢ F ⇒G is equivalent to T ∪ {F } ⊢G.

Exercise 3 (solution on page 207) Prove the following assertions:

• T ∪ {F } ⊢G is equivalent to T ∪ {¬G} ⊢¬F .

• If we have both T ⊢ F and T ⊢ ¬F , then we have T ⊢ G for any for-
mula G.

Exercise 4 (solution on page 207) Prove that {(¬G ⇒ G)} ⊢ G, for any for-
mula G.

Exercise 5 (solution on page 207) Prove that if we have both T ∪ {F } ⊢ G
and T ∪ {¬F } ⊢G then we have T ⊢G.
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Exercise 6 Prove the following assertions:

• {F } ⊢¬¬F

• {F,G} ⊢ F ∨G

• {¬F } ⊢¬(F ∧G)

• {¬G} ⊢¬(F ∧G)

• {F } ⊢ F ∨G

• {G} ⊢ F ∨G

• {¬F,¬G} ⊢¬(F ∨G)

• {¬F } ⊢ (F ⇒G)

• {G} ⊢ (F ⇒G)

• {F,¬G} ⊢¬(F ⇒G)

Exercise 7 For v some partial function from {Xi } in {0,1}, we set

TV = {Xi |v(Xi ) = 1}∪ {¬Xi |v(Xi ) = 0}.

Prove that any formula H whose variables are among the domain of V , the
relation v |= H implies TV ⊢ H and the relation v ̸|= H implies TV ⊢¬H.

This proof method is valid: By checking that all the axioms are tautologies, it is
easy to get convinced by recurrence on the length of a proof that the following results
are true.

Theorem 1 (Validity) Every provable propositional formula is a tautology.

What is less trivial, and more interesting is the converse: Any tautology has a
proof of this type.

Theorem 2 (Completeness) Every tautology is provable (by modus ponens).

We will not do the proof of this result here, but this corresponds to the following
exercise:
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Exercise 8 Prove this result by using the previous exercises: The key is the
possibility to reason by cases (Exercise 5) and the Exercise 7 which make the
relation between semantic and syntax.

We have just described a deduction system that is very closed to the usual notion
of proof in mathematics. However, this system is not easily exploitable to build an
algorithm that would determine if a given formula F is a tautology.

This is easy to be convinced of that by trying to do the previous exercises, and by
observing how hard it is to find a proof using this method.

3 Demonstrations by natural deduction

3.1 Rules from natural deduction

The previous notion of demonstration is in practise hard to use. Indeed, in the pre-
vious system, we are, somehow, constrained to keep the hypotheses during all the
demonstration. We can not easily express some however common reasoning. We
want to prove that A ⇒ B , supposing A and proving B under this hypothesis. This
remarks leads to introduce a notion of couple made of a finite set of hypotheses and
a conclusion. Such a couple is called a sequent.

We consider in this section that the propositional formulas also include ⊥, inter-
preted by false, and ⊤ interpreted by true.

Definition 4 (Sequent) A sequent is a couple Γ ⊢ A, where Γ is a finite set of
propositional formulas, and A is a propositional formula.

The deduction rules of natural deduction are then the following:

Γ⊢ A axiom for each A ∈ Γ

Γ⊢⊤ ⊤-intro

Γ⊢⊥
Γ⊢ A ⊥-elim

Γ⊢ A Γ⊢ B
Γ⊢ A∧B ∧-intro

Γ⊢ A∧B
Γ⊢ A ∧-elim

Γ⊢ A∧B
Γ⊢ B ∧-elim

Γ⊢ A
Γ⊢ A∨B ∨-intro

Γ⊢ B
Γ⊢ A∨B ∨-intro

Γ⊢ A∨B Γ, A ⊢C Γ,B ⊢C
Γ⊢C ∨-elim
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Γ, A ⊢ B
Γ⊢ A ⇒ B ⇒-intro

Γ⊢ A ⇒ B Γ⊢ A
Γ⊢ B ⇒-elim

Γ, A ⊢⊥
Γ⊢¬A ¬-intro

Γ⊢ A Γ⊢¬A
Γ⊢⊥ ¬-elim

Γ⊢ A∨¬A exclusive middle

The rules⊤-intro, ∧-intro, ∨-intro, ⇒-intro, ¬-intro, ∀-intro and ∃-intro are termed
introduction rules and the rules ⊥-elim, ∧-elim, ∨-elim, ⇒-elim, ¬-elim, ∀-elimand
∃-elimare termed elimination rules. The rules of natural deduction are hence classi-
fied in four groups: the introduction rules, the elimination rules, the axiom rule and
the exclusive middle rule.

A demonstration of a sequent Γ⊢ A is a derivation of this sequent, that is to say
a tree whose nodes are labeled by a sequent, whose root is labeled by Γ ⊢ A, and
such that if a node is labeled by some sequent∆⊢ B , then its children are labeled by
sequent Σ1 ⊢C1, . . . ,Σn ⊢Cn such that there exists some natural deduction rule, that
permits to deduce ∆⊢ B of Σ1 ⊢C1, . . . ,Σn ⊢Cn .

A sequent Γ ⊢ A is hence provable if there exists some demonstration of this
sequent.

3.2 Validity and completeness

We can prove the following results:

Theorem 3 (Validity) For any set of propositional formulasΓ and for any propo-
sitional formula A, if Γ⊢ A is provable, then A is a consequence of Γ.

Theorem 4 (Completeness) Let Γ be any set of propositional formulas. Let A be
some propositional formula that is a consequence of Γ.

Then Γ⊢ A is provable.

4 Proofs by resolution

We present briefly the notion of proof by resolution. This proof methods is maybe
less natural, but is simpler to be implemented on a computer.

The resolution applies to a formula in conjunctive normal form. Since any propo-
sitional formula can be put in an equivalent conjunctive normal form, this is not
restrictive.

Remark 2 At least in appearance. Indeed, it requires to be more clever than in
the previous chapter to transform a propositional formula in conjunctive nor-
mal form, if we want to avoid the problem of the explosion of the size of the
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formulas, and if we want to implement efficiently the method.

We call clause a disjunction of literals. Remember that a literal is a propositional
variable or its negation. We represent a clause c by the set of the literals on which
the disjunction applies.

Example 4 We hence write {p,¬q,r } instead of p ∨¬q ∨ r .

Given some literal u, we write u for the literal equivalent to ¬u: In other words,
if u is the propositional variable p, u values ¬p, and if u is ¬p, u is p. Finally, we
introduce some empty clause, denoted by □, whose value is 0 for any valuation.

Definition 5 (Resolvant) Let C1, C2 be two clauses. The clause C is a resolvent
of C1 and C2 if there exists some literal u such that:

• u ∈C1;

• u ∈C2;

• C is given by (C1\{u})∪ (C2\{u}).

Example 5 The clauses {p, q,r } and {¬r, s} have {p, q, s} as a resolvent.

Example 6 The clauses {p, q} and {¬p,¬q} have two resolvents, namely {q,¬q}
and {p,¬p}. The clauses {p} and {¬p} have the resolvent □.

This provides a notion of demonstration:

Definition 6 (Proof by resolution) Let T be a set of clauses. A proof by resolu-
tion of T is a finite sequence F1,F2, · · · ,Fn of clauses such that Fn is equal to □,
and for every i , either Fi is a clause in T , or Fi is a resolvent of two clauses F j ,Fk

with j < i and k < i .

Remark 3 The modus ponens, at the heart of the previous Hilbert-Frege proof
systems, consists in stating that from a formula F and a formula (F ⇒ G), we
deduce G. If we consider that the formula (F ⇒ G) is equivalent to the formula
(¬F∨G), the modus ponens can also be seen as stating that from a formula F and
a formula (¬F ∨G), we deduce G, which reads similar to the concept of resolvent.
The resolvent of { f } and of {¬ f , g } is {g }.

In some way, the resolvent is some generalized modus ponens, even if this
analogy is only an analogy, and if a proof in a given proof system can not be
translated directly into another.
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Exercise 9 Prove by resolution

T = {{¬p,¬q,r }, {¬p,¬q, s}, {p}, {¬s}, {q}, {t }}.

This proof method is valid (easy direction).

Theorem 5 (Validity) Every clause that appears in a resolution proof of t is a
consequence of T .

Actually, to prove a formula, one reasons in general in this proof method on its
negations, and one searches to prove that the negation is contradictory with the
hypotheses. The validity is in general expressed in this way:

Corollary 1 (Validity) If a set of clauses T admits some resolution proof, then T
is contradictory.

It turns out to be complete (harder direction).

Theorem 6 (Completeness) Let T be a set of contradictory clauses. It admits
some proof by resolution.

5 Proofs by tableau method

We have considered up to now some valid and complete proofs systems, without
providing a proof of our theorems. We will study more completely the tableau method.
We have chosen to develop this method, since it is very algorithmic, and based on
the notion of tree. This will contribute to our recurring argumentation that the no-
tion of tree is everywhere in computer science.

5.1 Principle

We can first consider that our formulas are written using only the connectors¬,∧,∨,⇒,
since the formula (F ⇔ G) can be considered as an abbreviation of formula ((F ⇒
G)∧ (G ⇒ F )).

Suppose that we want to prove that F is a tautology. If the formula F is of the
form (F1∧F2), then one can try to prove F1 and to prove F2. If the formula F is of the
form (F1 ∨F2), we write F1,F2, and we will explore two possibilities, one for the case
F1, and one for the case F2.

We will basically bring all the possibilities to these two configurations: If the for-
mula F is of the form (F1 ⇒ F2), using the fact that it can be considered as (F2∨¬F1),
we will use the rule of ∨, and if F is of the form ¬(F1 ⇒ F2), using that it can be con-
sidered as (F1 ∧¬F2), we will use the rule of ∧. All other cases can be dealt similarly
using de Morgan’s laws.
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Doing so systematically, we will build a tree, whose root is labeled by the nega-
tion of the formula F . In other words, to prove a formula F , the method starts from
the negation of formula F .

Let’s do it on the example of the following formula

(((p ∧q) ⇒ r ) ⇒ ((p ⇒ r )∨ (q ⇒ r ))).

that we want to prove.

We start from ¬F , that is to say:

¬(((p ∧q) ⇒ r ) ⇒ ((p ⇒ r )∨ (q ⇒ r ))).

• by transforming the implication¬(F1 ⇒ F2) into equivalent formula (F1∧¬F2),
we obtain ((p ∧q) ⇒ r )∧¬((p ⇒ r )∨ (q ⇒ r )) we get to the rule of ∧.

• We then apply the rule of∧: We consider the formulas ((p∧q) ⇒ r ) and¬((p ⇒
r )∨ (q ⇒ r )).

• Let’s consider the latter formula. From de Morgan’s law, it can be considered
as (¬(p ⇒ r )∧¬(q ⇒ r )): We can then associate to this formula ¬(p ⇒ r ) and
¬(q ⇒ r ) by the ∧ rule.

• We consider then ¬(p ⇒ r ), and we get the formulas p and ¬r .

• We then obtain q and ¬r from ¬(q ⇒ r ).

• We consider now ((p ∧ q) ⇒ r ), that can be seen as (r ∨¬(p ∧ q)). Thanks to
the ∨ rule, we have the choice between the formula ¬(p ∧q) or r .

• The case of r is excluded by the previous step, where we had ¬r .

• In the first case, we still have the choice between ¬p or ¬q . The two cases are
excluded, since we had before p and q .

Since all branches lead to a contradiction, there is no possibility in which F could
be false. Consequently, we deduce that F is a tautology.

The computation we have just done is naturally corresponding to the following
tree:
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¬(((p ∧q) ⇒ r ) ⇒ ((p ⇒ r )∨ (q ⇒ r )))

((p ∧q) ⇒ r ),¬((p ⇒ r )∨ (q ⇒ r ))

¬(p ⇒ r ),¬(q ⇒ r )

p,¬r

q,¬r

¬(p ∧q)

¬p ¬q

r

Each branch is a possible scenario. If a branch has a node labeled by some for-
mula A such that ¬A is appearing on the same branch (or their respective oppo-
sites), then one stops to develop this branch, and the branch is said to be closed: This
means that we know that a contradiction is reached. If all the branches are closed,
then we say that the tree is closed, and we are sure that all the possible scenarios are
excluded.

Consider now the example of the formula G given by

((p ∨q) ⇒ (r ⇒ (¬q ⇒¬p))).

With the same method, we build a tree whose root is ¬G .
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¬((p ∨q) ⇒ (r ⇒ (¬q ⇒¬p)))

(p ∨q),¬(r ⇒ (¬q ⇒¬p))

r,¬(¬q ⇒¬p)

¬q,¬¬p

p

p q

On this example, we obtain a tree with two branches. The right branch is closed.
The left branch is not: The propositional variables on this branch are r,¬q and p. By
taking the valuation v with v(r ) = 1, v(q) = 0, v(p) = 1, this provides the value 1 to
¬G , and hence 0 to G . In other words, we know that G is not a tautology. We say that
the tree is open. open .

5.2 Description of the method

Let’s now formalize the method. A tableau is a binary tree whose nodes are labeled
by sets of propositional formulas, and that is built recursively from its root, vertices
after vertices, by using two types of rules: The α rules and the β rules.

Remember that, in order to simplify the discussion, we have considered that the
propositional formulas are written using only the connectors ¬,∧,∨,⇒.

Formulas are divided in two groups, the α-group, and the β-group. To each for-
mula, we associate inductively two new formulas according to the following rules:

• The formulas of the following form are α-formula:

1. α= (A∧B). To such a formula is associated α1 = A and α2 = B .

2. α=¬(A∨B). To such a formula is associated α1 =¬A and α2 =¬B .

3. α=¬(A ⇒ B). To such a formula is associated α1 = A and α2 =¬B .

4. ¬¬A: To such a formula is associated α1 =α2 = A.

• The formulas of the following form are β-formulas:

1. β=¬(A∧B). To such a formula is associated β1 =¬A, β2 =¬B .
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2. β= (A∨B). To such a formula is associated β1 = A, β2 = B .

3. β= (A ⇒ B). To such a formula is associated β1 =¬A, β2 = B .

If B a branch of a tableau, we denote by
⋃

B the set of the formulas that appear
on a vertex of B .

The two recursive rules to construct a tableau are the following:

1. An α rule consists in extending a finite branch of tableau T by the vertex la-
beled {α1,α2}, where α is some α-formula that appears on a vertex of B .

2. Aβ rule consists in extending a finite branch of a tableau T by two sons labeled
respectively by {β1} and {β2}, where β is some β-formula that appears in some
vertex of B .

Remark 4 Observe that this is not necessarily the last vertex of a branch B that
is developed at each step, but a formula somewhere on the branch.

A branch B is said to be closed if there exists some formula A such that A and ¬A
appears on the branch B . In the opposite case, the branch is said to be open.

A branch B is developed if

1. for any α-formula of
⋃

B , α1 ∈⋃
B and α2 ∈⋃

B .

2. for any β-formula of
⋃

B , β1 ∈⋃
B or β2 ∈⋃

B .

A tableau is said to be developed if all its branches are either closed or developed.
A tableau is said to be closed if all its branches are closed. A tableau is said to be
openopen tree in tableau method if it has some open branch.

Finally, a tableau for a formula A (respectively for a set of formulasΣ) is a tableau
whose root is labeled by {A} (respectively by {A|A ∈Σ}).

5.3 Termination of the method

First, observe that it is always possible to apply some α or β rules until a developed
tableau is reached.

Proposition 1 IfΣ is a finite set of formulas, then there is some (finite) developed
tableau for Σ.

Proof: This is proved by recurrence on the number n of elements of Σ.
For the case n = 1, observe that the length of the formulas α1, α2, β1, and β2 is

always strictly less than the length of α and β. The process of extension of branches
that are not closed hence eventually terminates after finitely many steps. The array
that is obtained a the end is developed, since otherwise it would have some exten-
sion.

For the case n > 1, we can write Σ= {F1, · · · ,Fn}. Consider by recurrence hypoth-
esis a developed tableau forΣ= {F1, · · · ,Fn−1}. If this tableau is closed or if Fn is some
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propositional variable, then this tableau is a developed tableau for Σ. Otherwise, we
can extend all the open branches by applying all the rules corresponding to formula
Fn , and by developing all the obtained branches. The process is terminating for the
same reason as for the case n = 1. □

Remark 5 Of course, from a given root, there are many ways to build some de-
veloped tableau.

5.4 Validity

The previous method provides a proof method.

Definition 7 A formula F said to be provable by tableau if there exists some
closed tableau with the root {¬F }. We then write ⊢F when this holds.

Exercise 10 Prove that A is a consequence of ((A ∨¬B)∧B) by the tableau
method, i.e. ⊢ (((A∨¬B)∧B) ⇒ A).

Exercise 11 Prove that ¬C is a consequence of ((H ∧ (P ∨C )) ⇒ A)∧ H ∧
¬A∧¬P ) by the tableau method.

The method is valid.

Theorem 7 (Validity) Any provable formula is a tautology.

Proof: We will say that a branch B of a tableau is realizable if there exists some
valuation v such that v(A) = 1 for any formula A ∈ ⋃

B and v(A) = 0 if ¬A ∈ ⋃
B . A

tableau is said to be realizable if it has some realizable branch.
We just need to prove the following result.

Lemma 1 Let T ′ be some immediate extension of the tableau T : That is to say
the tableau obtained by applying either an α or a β-rule to T . If T is realizable,
then so does T ′.

This lemmas is sufficient to prove the theorem. Indeed, if F is provable, then
there is some closed tableau whose root is ¬F . That means that in every branch,
there is a formula A such that A and ¬A appear on this branch, and hence none of
the branches of T is realizable. By this lemma, this means that we started from a tree
reduced to ¬F that was not realizable. In other words, that F is a tautology.

It remains to prove the lemma. Let B be some realizable branch of T , and let B ′
the branch of T that is extended in T ′. If B ̸= B ′, then B remains a realizable branch
of T . If B = B ′, then B is extended in T ′,
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1. either in a branch Bα by some α-rule;

2. or by two branches Bβ1 and Bβ2 by some β-rule.

In the first case, let α be the formula used by the rule, and let v be a valuation
that realizes B : From v(α) = 1, we deduce that v(α1) = 1 and v(α2) = 1. Hence v is a
valuation realizing Bα and the tableau T ′ is realizable.

In the second case, let β be the formula used by the β-rule. From v(β) = 1, we
deduce that at least one of the values v(β1) and v(β2) values 1. Hence v realizes one
of the branches Bβ1 and Bβ2 , and the tableau T ′ is realizable. □

5.5 Completeness

The method is complete. In other words, the converse of the previous theorem is
true.

Theorem 8 (Completeness) Every tautology is provable.

Corollary 2 Let F be some propositional formula.
F is a tautology if and only if F is provable.

The rest of this subsection is devoted to prove this theorem.
Observe first that if B is a branch that is both developed and open in some tableau

T , then then set
⋃

B of the formulas that appear in B have the following properties:

1. there is no propositional variable such that p ∈⋃
B and such that ¬p ∈⋃

B ;

2. for every α-formula α ∈⋃
B , α1 ∈⋃

B and α2 ∈⋃
B ;

3. for every β-formula β ∈⋃
B , β1 ∈⋃

B or β2 ∈⋃
B .

Lemma 2 Every developed and open branch is realizable.

Proof: Let B some developed and open branch of tableau T . We defined a valu-
ation v by:

1. if p ∈⋃
B , then v(p) = 1;

2. if ¬p ∈⋃
B , then v(p) = 0;

3. if p ̸∈⋃
B and ¬p ̸∈⋃

B , then set (arbitrarily) v(p) = 1.

We prove by structural induction on a that: if A ∈⋃
B , then v(A) = 1, and if ¬A ∈⋃

B , then v(A) = 0.
Indeed, this is true for propositional variables.
If A is aα-formula, thenα1 ∈⋃

B andα2 ∈⋃
B . By induction hypothesis, v(α1) =

1, v(α2) = 1, and hence v(α) = 1.
If A is a β-formula, then β1 ∈⋃

B or β2 ∈⋃
B . By induction hypothesis, v(β1) = 1

or v(β2) = 1, and hence v(β) = 1. □
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Proposition 2 If there exists some closed tableau whose root is ¬A, then any de-
veloped tableau whose root is ¬A is closed.

Proof: By contradiction. Let T be some developed and open tableau whose root
is ¬A, and let B be some open branch of T . By previous lemma, B is realizable, sand
since ¬A is in B , ¬A is satisfiable. A is hence not a tautology, and hence not provable
by tableau. There is no closed tableau with the root ¬A. □

We have all the ingredients to prove Theorem 8.
Suppose that A is not provable by tableau. Let T be a developed tableau whose

root is ¬A. T is not closed. As in the previous proof, if B is some open branch of T ,
then B is realizable, and hence ¬A is satisfiable. In other words, A is not a tautology.

5.6 One consequence of compactness theorem

Definition 8 We will say that a set Σ of formulas is refutable by tableau if there
exists some closed tableau with the root Σ.

Corollary 3 Every set Σ of formulas that is not satisfiable is refutable by tableau.

Proof: By the compactness theorem, a set of formulas Σ that is not satisfiable
has a finite subset Σ0 that is not satisfiable. This finite set of formulas as a refutation
by tableau, i.e. there is a closed table with the root Σ0. This tableau also provides a
closed tableau with the root Σ. □

6 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
[Cori & Lascar, 1993], and [Mendelson, 1987] for the demonstration based on modus
ponens, of [Stern, 1994] for a simple presentation of the proof methods based on
resolution, and to [Lassaigne & de Rougemont, 2004] and [Nerode & Shore, 1997] for
the tableau based methods.

Bibliography This chapter has been written by using [Cori & Lascar, 1993], and
[Dehornoy, 2006] for the part on proof methods based on modus ponens, and [Stern, 1994]
for the presentation of proofs by resolution method. The part on natural deduction
is taken from [Dowek, 2008]. The section on the tableau method is taken from book
[Lassaigne & de Rougemont, 2004].
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