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Propositional calculus

The propositional logic provides means to discuss logical grammatical connectors
such as negation, disjunction or negation, by composition starting some Boolean
propositions. These connectors are sometimes called Aristotelian as they have been
pointed out by Aristotle.

The propositional logic permits essentially to talk about Boolean functions, that
is to say about functions from {0,1}n → {0,1}. Indeed, the variables, that is to say the
propositions can only take two values, true or false.

The propositional calculus has an important position in computer science. A
first reason is because today’s computers are digital and working in binary. This has
the consequence that our processors are essentially made of binary gates of the type
that we will study in this chapter.

From a point of view of expressive power, propositional calculus remains very
limited. For example, one cannot express in propositional calculus the existence of
an object with a given property. The predicate calculus, more general, that we will
study in Chapter 5, provides means to express some properties of objects and rela-
tions between objects, and more generally to formalise the mathematical reasoning.

Since the propositional calculus provides anyway the common basis to numer-
ous logical systems, we will take some time on it in this chapter.

1 Syntax

To define formally and properly this language, we must distinguish the syntax from
the semantic: The syntax describes how formulas are written. The semantic de-
scribes their meaning.

Fix a finite or denumerable set P = {p0, p1, · · · } of symbols that are called propo-
sitional variables.

Definition 1 (Propositional formulas) The set of propositional formulas F over
P is the language over the alphabet P ∪ {¬,∧,∨,⇒,⇔, (, )} defined inductively
by the following rules: ,,,,

(B) it contains P : Every propositional variable is a propositional formula;

(I ) If F ∈F then ¬F ∈F ;
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(I ) If F,G ∈F then (F∧G) ∈F , (F∨G) ∈F , (F⇒G) ∈F , and (F⇔G) ∈F .

It is an inductive definition that is valid by the considerations of the previous
chapter: It is a non-unambiguous definition. This can be reformulated by the fol-
lowing proposition, that is sometimes called unique reading theorem of proposi-
tional calculus.

Remark 1 The non-ambiguity comes essentially from the explicit parentheses.
We use here the trick in the previous chapter that was considering Ar i th′ instead
of Ar i th to allow to write some expressions without any reading ambiguity.

Proposition 1 (Decomposition / Uniqueness reading) Let F be a propositional
formula. Then F is of one, and exactly one of the following forms:

1. a propositional formula p ∈P ;

2. ¬G, where G is a propositional formula;

3. (G∧H) where G and H are some propositional formulas;

4. (G∨H) where G and H are some propositional formulas;

5. (G⇒H) where G and H are some propositional formulas;

6. (G⇔H) where G and H are some propositional formulas.

Moreover, in the cases 2., 3., 4., 5. and 6., there is unicity of the formula G and
unicity of the formula H with these properties.

The fact that a formula can always be decomposed into one of the 6 cases above
is easy to establish inductively. The unicity of the decomposition follows from the
following exercise:
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p ¬p q p∨q p∧q p⇒q p⇔q
0 1 0 0 0 1 1
1 0 0 1 0 0 0
0 1 1 1 0 1 0
1 0 1 1 1 1 1

Figure 1: Truth value.

Exercise 1 Prove that the previous inductive definition is non-ambiguous,
that is that G and H are uniquely defined in each of the cases above.

We can proceed in the following way.

• Prove that in any formula F the number of open parentheses is equal
to the number of closing parentheses.

• Prove that in any word M prefix of the word F , we have o(M) ≥ f (M),
where o(M) is the number of open parentheses, and f (M) the number
of closing parentheses.

• Prove that in any formula F whose first symbol is some open paren-
thesis, and for any word M proper prefix of F , we have o(M) > f (M).

• Prove that any word M proper prefix of F is not a formula.

• Deduce the result.

We call subformula of F a formula that appears in the recursive decomposition
of F .

2 Semantic

We are going now to define the semantic of a propositional formula, that is to say,
the meaning that is assigned to such a formula.

The truth value of a formula is defined as the interpretation of this formula, after
having fixed the truth value of the propositional variables: The principle is to inter-
pret the symbols ¬, ∨, ∧, ⇒, ⇔ by the logic neg ati on, the logical or (also called
disjunction), the logical and (also called conjunction), the implication and the dou-
ble implication (also called equivalence) ).

Formally,

Definition 2 (Valuation) A valuation is a distribution of truth value to the propo-
sitional variables, that is to say a function from P to {0,1}.

In all what follows, 0 represents false, and 1 represents true.
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The conditions in the following definition are often represented as a truth value:
See Figure 1.

Proposition 2 Let v be a valuation.
By Theorem 2.5, there exists a unique function v defined on all F that satis-

fies the following conditions:

(B) v extends v: for every propositional variable p ∈P , v(p) = v(p);

(I ) the negation is interpreted by logic negation:
if F is of the form ¬G, then v(F ) = 1 if and only if v(G) = 0;

(I ) ∧ is interpreted as the logical and:
if F is of the form G∧H, then v(F ) = 1 if and only inf v(G) = 1 and v(H) = 1;

(I ) ∨ is interpreted as the logical or:
if F is of the form G∨H, then v(F ) = 1 if and only if v(G) = 1 or v(H) = 1;

(I ) ⇒ is interpreted as the logical implication:
if F is of the form G⇒H, then v(F ) = 1 if and only if v(H) = 1 or v(G) = 0;

(I ) ⇔ is interpreted as the logical equivalence:
if F is of the form G⇔H, then v(F ) = 1 if and only if v(G) = v(H).

We write v |=F for v(F ) = 1, and we say that v is a model of F , or that v satisfies
F . We write v ̸|=F otherwise. The value of v(F ) for the valuation v is called the truth
value of F on v .

3 Tautologies, equivalent formulas

We would like to classify the formulas according to their interpretations. A particular
class of formulas are those that are always trues, and that are called the tautologies.

Definition 3 (Tautology) A tautology is a formula F that is satisfied by any val-
uation. We write in this case |=F .

Definition 4 (Equivalence) Two formulas F and G are said to be equivalent if
for every valuation v, v(F ) = v(G). We write in this case F≡G.

Example 1 The formula p ∨¬p is a tautology. The formulas p and ¬¬p are
equivalent.

Remark 2 It is important to understand that ≡ is a symbol that is used to write
a relation between formulas, but that F≡G is not a propositional formula.
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Exercise 2 Prove that ≡ is some equivalence relation on the formulas.

4 Some elementary facts

Exercise 3 Prove that for any formulas F and G, the following formulas are
tautologies:

(F⇒F ),

(F ⇒ (G ⇒ F )),

(F ⇒ (G ⇒ H)) ⇒ ((F ⇒G) ⇒ (F ⇒ H)).

Exercise 4 [Idempotence] Prove that for any formula F we have the equiv-
alences:

(F ∨F )≡F,

(F ∧F ) ≡ F.

Exercise 5 [Associativity] Prove that for any formulas F , G, H we have the
equivalences:

(F∧(G ∧H)) ≡ ((F ∧G)∧H),

(F∨(G ∨H)) ≡ ((F ∨G)∨H).

Because of associativity, one often denotes F1∨F2∨·· ·∨Fk for (((F1∨F2)∨F3) · · ·∨
Fk ), and F1 ∧F2 ∧·· ·∧Fk for (((F1 ∧F2)∧F3) · · ·∧Fk ).

Remark 3 Exactly as we do for arithmetic expression: We write 1+2+3 for ((1+
2)+3) as well as for (1+ (2+3)). See all the discussions on Ar i th and Ar i th′ in
the previous chapter.
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Exercise 6 [Commutativity] Prove that for any formulas F and G we have
the equivalences:

(F∧G) ≡ (G ∧F ),

(F∨G) ≡ (G ∨F ).

Exercise 7 [Distributivity] Prove that for any formulas F , G, H we have the
equivalences:

(F∧(G∨H)) ≡ ((F ∧G)∨ (F ∧H)),

(F ∨ (G ∧H)) ≡ ((F ∨G)∧ (F ∨H)).

Exercise 8 [Morgan’s law] Prove that for any formulas F and G we have the
equivalences:

¬(F ∧G) ≡ (¬F ∨¬G),

¬(F ∨G) ≡ (¬F ∧¬G).

Exercise 9 [Absorption] Prove that for any formulas F and G we have the
equivalences:

(F∧(F∨G)) ≡ F,

(F ∨ (F ∧G)) ≡ F.

5 Replacement of a formula by some equivalent formula

We know now some equivalences between formulas, but we are going to convince
ourselves that one can use these equivalences in a compositional way: If one re-
places in some formula some subformula by some equivalent formula, then one
obtains an equivalent formula.

5.1 A simple remark

Observe first that the truth value of a formula is depending only on the propositional
formulas that appear in the formula: When F is a formula, we will write F (p1, · · · , pn)
to say that the formula F is written with the propositional formulas p1, · · · , pn only.
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Proposition 3 Let F (p1, · · · , pn) be a formula. Let v be some valuation. The
truth value of F on v is depending only on the value of v on {p1, p2, · · · , pn}.

Proof: The property can be established easily by structural induction. □

5.2 Substitutions

We have to defined what means replacing p by G in a formula F , denoted by F (G/p).
This provides the rather pedantic definition, but we have to go through this:

Definition 5 (Substitution of p by G in F ) The formula F (G/p) is defined by in-
duction on the formula F :

(B) If F is the propositional formula p, then F (G/p) is the formula G;

(B) If F is a propositional formula q, with q ̸= p, then F (G/p) is the formula
F ;

(I ) If F is of the form ¬H, then F (G/p) is the formula ¬H(G/p);

(I ) If F is of the form (F1∨F2), then F (G/p) is the formula (F1(G/p)∨F2(G/p));

(I ) If F is of the form (F1∧F2), then F (G/p) is the formula (F1(G/p)∧F2(G/p));

(I ) If F is of the form (F1 ⇒ F2), then F (G/p) is the formula (F1(G/p) ⇒ F2(G/p));

(I ) If F is of the form (F1 ⇔ F2), then F (G/p) is the formula (F1(G/p) ⇔ F2(G/p)).

5.3 Compositionality

We obtain the promised result: If one replaces in a formula some subformula by
some equivalent formula, then one obtains an equivalent formula;

Proposition 4 Let F,F ′,G and G ′ be formulas. Let p be a propositional variable.

• If F is a tautology, then F (G/p) is also a tautology.

• If F ≡ F ′, then F (G/p) ≡ F ′(G/p).

• If G ≡G ′ then F (G/p) ≡ F (G ′/p).

Exercise 10 Prove the result by structural induction.

6 Complete systems of connectors
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Proposition 5 Every propositional formula is equivalent to a propositional for-
mula that is built only with the connectors ¬ and ∧.

Proof: This results from a proof by induction on the formula. This is true for the
formulas that correspond to some propositional variable. Suppose the property true
for the formulas G and H , that is to say suppose that G (respectively H) is equivalent
to some formula G ′ (respectively H ′) built only with the connectors ¬ and ∧.

If F is of the form ¬G , then F is equivalent to ¬G ′, and the induction hypothesis
is preserved.

If F is of the form (G ∧ H), then F is equivalent to (G ′∧ H ′), and the induction
hypothesis is preserved.

If F is of the form (G ∨ H), by using the second Morgan’s law, and the fact that
K ≡¬¬K to eliminate the double negations, we obtain that F ≡¬(¬G ′∧¬H ′), which
is indeed built using only the connectors ¬ and ∧.

If F is of the form (G ⇒ H), then F is equivalent to (¬G ′∨H ′) that is equivalent
to a formula build uniquely with the connectors ¬ and ∧ by the previous cases.

If F is of the form (G ⇔ H), then F is equivalent to (G ′ ⇒ H ′)∧ (H ′ ⇒ G ′) that is
equivalent to a formula build uniquely with the connectors ¬ and ∧ by the previous
cases. □

A set of connectors with the above property for {¬,∧} is called a complete system
of connectors.

Exercise 11 Prove that {¬,∨} is also a complete system of connectors.

Exercise 12 Give a binary logic connector that, alone, constitutes a com-
plete system of connectors.

7 Functional completeness

Suppose that P = {p1, p2, · · · , pn} is finite. Let V be the set of valuations on P . Since
a valuation is a function from {1,2, . . . ,n} to {0,1}, V contains 2n elements.

Each formula F over P can be seen as a function from V to {0,1}, that is called
its truth value of F : This function is the function that, to a valuation v associates the
truth value of this formula on the valuation.

There are 22n
functions from V to {0,1}. The question that one may ask is to know

if all these functions can be written as formulas. The answer is positive:

Theorem 1 (Functional completeness) Suppose P = {p1, p2, · · · , pn} is finite.
Let V be the set of valuations over P . Every function f from V to {0,1} is the
truth value of some formula F over P .
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Proof: The proof is done by recurrence on the number of propositional variables
n.

For n = 1, there are four functions from {0,1}1 to {0,1}, that are represented by
the formulas p, ¬p, p ∨¬p, p ∧¬p.

Suppose that the property is true for n − 1 propositional variables. Consider
P = {p1, · · · , pn} and let f be a function from {0,1}n to {0,1}. Each valuation v ′
over {p1, p2, · · · , pn−1} can be seen as the restriction of a valuation on {p1, · · · , pn}.
Let f0 (respectively f1) the restriction of f to the valuation v such that v(pn) = 0
(resp. v(pn) = 1). The functions f0 and f1 are some functions defined on valuations
over {p1, · · · , pn−1} to {0,1} and can be represented by formulas G(p1, · · · , pn−1) and
H(p1, · · · , pn−1) respectively by recurrence hypothesis. The function f can then be
represented by the formula

(¬pn ∧G(p1, · · · , pn−1))∨ (pn ∧H(p1, · · · , pn−1))

which proves the recurrence hypothesis at rank n. □

Remark 4 Our attentive reader will have observed that the Proposition 5 can be
seen as a consequence of this proof.

8 Normal forms

8.1 Conjunctive and disjunctive normal forms

One often seeks to transform the formulas into some equivalent form as simple as
possible.

Definition 6 A literal is a propositional formula or its negations, i.e. of the form
p, or ¬p, for p ∈P .

Definition 7 A disjunctive normal form is a disjunction F1 ∨F2 · · ·∨Fk of k for-
mulas, k ≥ 1 where each formula Fi , 1 ≤ i ≤ k is a conjunction G1∧G2 · · ·∧Gℓ of
ℓ literals (ℓ can possibly depend on i ).

Example 2 The following formulas are in disjunctive normal form

((p ∧q)∨ (¬p ∧¬q)

((p ∧q ∧¬r )∨ (q ∧¬p))

(p ∧¬q)
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Definition 8 A conjunctive normal form is a conjunction F1 ∧ F2 · · · ∧ Fk of k
formulas, k ≥ 1 where each formula Fi , 1 ≤ i ≤ k is a disjunction G1 ∨G2 · · ·∨Gℓ

of ℓ literals (ℓ can possibly depend on i ).

Example 3 The following formulas are in conjunctive normal form

(¬p ∨q)∧ (p ∨¬q)

(¬p ∨q)∧¬r

(¬p ∨q)

Theorem 2 Every formula on a finite number of propositional variables is equiv-
alent to some formula in conjunctive normal form.

Theorem 3 Every formula on a finite number of propositional variables is equiv-
alent to some formula in disjunctive normal form.

Proof: These two theorems are proved by recurrence on the number n of propo-
sitional formulas.

In the case where n = 1, we have already considered in the previous proofs some
formulas covering all the possible cases, and which are actually both in conjunctive
normal form and disjunctive normal form.

We suppose the property true for n−1 propositional variables. Let f be the truth
value associated to the formula F (p1, · · · , pn). As in the previous proof, we can build
some formula that represents f , by writing a formula of the form

(¬pn ∧G(p1, · · · , pn−1))∨ (pn ∧H(p1, · · · , pn−1)).

By recurrence hypothesis, G and H are equivalent to formulas in disjunctive normal
form

G ≡ (G1 ∨G2 ∨·· ·∨Gk )

H ≡ (H1 ∨H2 ∨·· ·∨Hℓ)

We can then write

(¬pn ∧G) ≡ (¬pn ∧G1)∨ (¬pn ∧G2)∨·· ·∨ (¬pn ∧Gk )

which is in disjunctive normal form and

(pn ∧H) ≡ (pn ∧H1)∨ (pn ∧H2)∨·· ·∨ (pn ∧Hk )

which is also in disjunctive normal form. The function f is hence represented by
the disjunction of these two formulas, and hence by a formula in disjunctive normal
form.
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If we want to obtain F in conjunctive normal form, then the hypothesis induc-
tion produces two conjunctive normal form G and H . The equivalence that is used
is then

F ≡ ((¬pn ∨H)∧ (pn ∨G)).

□

Remark 5 Our attentive reader would have observed that the previous theorem,
as well as Proposition 5 can also be seen as the consequences of this proof.

8.2 Transformation methods

In practise, there exist two main methods to determine the disjunctive normal form,
or the conjunctive normal form of a given formula. The first method consists in
transforming the formula by successive equivalence by using the following rules ap-
plied in this order:

1. elimination of connectors ⇒ by

(F ⇒G) ≡ (¬F ∨G)

2. entering the negation in the innermost position:

¬(F ∧G) ≡ (¬F ∨¬G)

¬(F ∨G) ≡ (¬F ∧¬G)

3. distributivity of ∨ and ∧ one with respect to the other

F ∧ (G ∨H)) ≡ ((F ∧H)∨ (F ∧H))

F ∨ (G ∧H)) ≡ ((F ∨H)∧ (F ∨H))

Example 4 Put the formula ¬(p ⇒ (q ⇒ r ))∨ (r ⇒ q) in disjunctive and con-
junctive normal form.

We use the successive equivalences

¬(¬p ∨ (¬q ∨ r ))∨ (¬r ∨q)

(p ∧¬(¬q ∨ r ))∨ (¬r ∨q)

(p ∧q ∧¬r )∨ (¬r ∨q)

that is a disjunctive normal form.

(p ∧q ∧¬r )∨ (¬r ∨q)

(p ∧¬r ∨q)∧ (¬r ∨q)
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The other method consists in determining the valuations v such that v(F ) = 1,
and to write a disjunction of conjunctions, each conjunction corresponding to a val-
uation for which v(F ) = 1.

The determination of a conjunctive normal form follows the same principle, by
exchanging the valuations that value 1 with the valuations giving the value 0, by ex-
changing conjunctions and disjunctions.

Exercise 13 Prove that the conjunctive and disjunctive normal form of a
formula can be exponentially longer than the size of the formula. The size
of a formula is defined as the length of the formula seen as a word.

9 Compactness theorem

9.1 Satisfaction of a set of formulas

We are given this times a set Σ of formulas. One wants to know when it is possible to
satisfy all the formulas of Σ.

Let’s start by fix the terminology.

Definition 9 Let Σ be a set of formulas.

• A valuation satisfies Σ if it satisfies each formula of Σ. One also says in
that case that this valuation is a model of Σ.

• Σ is said consistent (this is also called satisfiable) if it has a model. In
other words, if there exists some valuation that satisfies Σ.

• Σ is said inconsistent, or contradictory, in the opposite case

Definition 10 (Consequence) Let F be a formula. The formula F is said to a
consequence of Σ if every model of Σ is a model of F . We then write Σ|=F .

Example 5 The formula q is a consequence of the set of formulas {p, p ⇒ q}. The
set of formulas {p, p ⇒ q,¬q} is inconsistent.

We can get convinced first of the following results, that follows from a game on
definitions.

Proposition 6 Every formula F is a consequence of a set Σ of formulas if and
only if Σ∪ {¬F } is inconsistent.

Proof: If every valuation that satisfies Σ satisfies F , there there is no valuation
satisfying Σ∪ {¬F }. Conversely, by contradiction: If there is a valuation that satisfies
Σ and not satisfying F , then this valuation satisfies Σ and ¬F . □
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Exercise 14 Prove that for any formulas F and F ′, {F } |= F ′ if and only if
F ⇒ F ′ is a tautology.

More fundamentally, we ave the following rather surprising and fundamental
result.

Theorem 4 (Compactness theorem (first version)) Let Σ be a set of formulas
built on a denumerable set P of propositional variables.

Then Σ is consistent if and only if every finite subset of Σ is consistent.

Remark 6 Observe that the hypothesis P countable is not necessary, if we accept
to use Zorn hypothesis (the axiom of choice). We will restrict to the case where P

is denumerable in all the proofs that follow.

Actually, this theorem can be reformulated as follows:

Theorem 5 (Compactness theorem (second version)) Let Σ be a set of formu-
las built on a denumerable set P of propositional variables.

Then Σ is inconsistent if and only if Σ has some finite inconsistent subset.

Or even under the following form:

Theorem 6 (Compactness theorem (third version)) For every set Σ of proposi-
tional formulas, and for every propositional formula F built on a denumerable
set P of propositional variables, F is a consequence of Σ if and only if F is a
consequence of a finite subset of Σ.

The equivalence of the three formulations is a simple exercise of manipulations
of definitions. We will prove the first version of the theorem.

One of the implication is trivial: If Σ is consistent, then every subset of Σ is con-
sistent, and in particular the finite subsets.

We will provide two proofs of the other implication.
A first proof that makes references to notions of topologies, in particular com-

pactness, and that is addressed to readers who know theses notion, and who like
topological arguments.

Proof:[Topological proof] The topological space {0,1}P (with the product topol-
ogy) is a compact space, since it is obtained as the product of compact spaces (Ty-
chonoff theorem).

For every propositional formula F ∈ Σ, the set F of the valuations which satisfy
it is open in {0,1}P , as the truth value of a formula is depending only from a finite
number of propositional variables, namely those appearing in the formula. It is also
closed, since those that are not satisfying F are those satisfying t ¬F .

The hypothesis of the theorem implies that any finite intersection of F for F ∈ Σ
is non-empty. Since {0,1}P is compact, the intersection of all the F for F ∈Σ is hence
non-empty. □
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Here is a proof that avoid topology.
Proof:[Direct proof] Consider P = {p1, p2, · · · , pk , · · · } an enumeration of P .
We will prove the following lemma: Suppose that there exists some applica-

tion v from {p1, p2, · · · , pn} to {0,1} such that any finite subset of Σ has a model
in which p1, · · · , pn take the values v(p1), . . . , v(pn). Then v can be extended to
{p1, p2, · · · , pn+1} with the same property.

Indeed, if v(pn+1) = 0 does not fit, then there exists some finite set U0 of Σ that
cannot be satisfied when p1, · · · , pn , pn+1 take respective values v(p1), . . . , v(pn) and
0. If U is any finite subset of Σ, then from the hypothesis made on v , U0 ∪U has a
model in which p1, · · · , pn take the values v(p1), · · · , v(pn). In this model, the propo-
sition pn+1 takes the value 1. In other words, every finite subset U of Σ has a model
in which p1, · · · , pn , pn+1 take the respective values v(p1), . . . , v(pn) and 1. Stated in
another way, either v(pn+1) = 0 is fine with the property, in which case, we can fix
v(pn+1) = 0, or v(pn+1) = 0 is not fine, in which case, we can set v(pn+1) = 1 which is
fine with the property.

By using this lemma, we hence define some valuation v such that, by recurrence
over n, for every n, every finite set of Σ has a model in which p1, · · · , pn take the
values v(p1), . . . , v(pn).

It follows that v satisfies Σ: Indeed, let F be a formula of Σ. F is depending only
a finite set of propositional formulas pi1 , pi2 , · · · , pik (the one appearing in F ). By
considering n = max(i1, i2, · · · , ik ), each of these propositional variables pi j is among
{p1, · · · , pn}. We then know that the finite subset {F } reduced to the formula F admits
a model in which p1, · · · , pn take the value v(p1), . . . , v(pn), i.e. F is satisfied by v .

□

10 Exercises

Exercise 15 Relate the equivalent propositions:

1. ¬(p ∧q)

2. ¬(p ∨q)

3. p → (¬q)

4. ¬(p → q)

1. (¬p ∧¬q)

2. q → (¬p)

3. (¬p ∨¬q)

4. p ∧ (¬q)

Exercise 16 By adding two numbers whose binary expression uses at most
two digits, say ab and cd, we obtain a number of at most three digits pqr .
For example, 11+01 = 100. Give an expression of p, q and r as a function of
a,b,c and d using the usual connectors.
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Exercise 17 (solution on page 205) Let F and G two formulas with no
propositional variable in common. Prove that the two following properties
are equivalent:

• The formula (F ⇒G) is a tautology;

• At least one of ¬F and G is a tautology.

*Exercise 1 [Interpolation theorem] Let F and F ′ such that F ⇒ F ′ is a tautol-
ogy. Prove that there exists some propositional formula C , whose propositional
variables appear in F and F ′, such that F ⇒ C and C ⇒ F ′ are two tautologies
(one can reason on recurrence on the number of variables that have at least one
occurrence in F without any in F ′).

Exercise 18 (solution on page 205) [Application of compactness to graph
colouring] A graph G = (V ,E) is k-colorable if there exists some function f
from V in {1,2, . . . ,k} such that for all (x, y) ∈ E, f (x) ̸= f (y). Prove that a
graph is k-colorable if and only if any of its finite sub-graphs is k-colorable
.

*Exercise 2 [Applications of compactness to group theory] A group G is said to
be totally ordered if we have on G some total order relation such that a ≤ b im-
plies ac ≤ bc and ca ≤ cb for all a,b,c ∈G. Prove that for some Abelian group G
can be ordered, it is sufficient and necessary that any subgroup of G spanned by
a finite set elements of G can be ordered.

11 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest [Cori & Lascar, 1993]
and [Lassaigne & de Rougemont, 2004].
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