
Foundations of Computer Science
Logic, models, and computations

Chapter: Time complexity

Course CSC_41012_EP

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of July 11, 2025

2

Time complexity

This chapter is focusing on some particular resource of an algorithm: The times it
takes to be executed.

The previous chapter applies in particular to this measure: The computation
time of some algorithm is defined as the time it takes to be executed.

To illustrate the importance of this measure of complexity, let us focus on the
time corresponding to algorithms of complexity n, n log2 n, n2, n3, 1.5n , 2n and n!
for input of size n, for increasing n, on a processor able to execute one million of
elementary instructions by second. We write ∞ in the array as soon as values more
than 1025 years (this figure is repeated from [Kleinberg & Tardos, 2006]).

Complexity n n log2 n n2 n3 1.5n 2n n!
n = 10 < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 4 s
n = 30 < 1 s < 1 s < 1 s < 1 s < 1 s 18 min 1025 years
n = 50 < 1 s < 1 s < 1 s < 1 s 11 min 36 years tl
n = 100 < 1 s < 1 s < 1 s 1s 12,9 years 1017 years tl
n = 1000 < 1 s < 1 s 1s 18 min tl tl tl
n = 10000 < 1 s < 1 s 2 min 12 days tl tl tl
n = 100000 < 1 s 2 s 3 hours 32 years tl tl tl
n = 1000000 1s 20s 12 days 31,710 years tl tl tl

As one can see, an algorithm of exponential complexity is very rapidly useless,
and is hence not reasonable. The main subject of this chapter is to understand what
is called a reasonable algorithm in theoretical computer science, and to understand
the theory of NP-completeness that allows to discuss the frontier between reason-
able and non-reasonable algorithms.

1 The notion of reasonable time

1.1 Convention

For several reasons, the following convention has been adopted in Computer Sci-
ence:

3

4

Definition 1 (Efficient algorithm) An algorithm is efficient if its time complex-
ity is polynomial, that is to say in O

(
nk

)
for some integer k.

This is a convention (and others could have been chosen1) that has been widely
been accepted since the 70’s.

Remark 2 One can argue that an algorithm of complexity O
(
n1794

)
is not very

reasonable. Yes, but one must indeed fix a convention, and this is indeed consid-
ered as reasonable in theory of complexity.

Remark 3 Why don’t taking a linear time, or a quadratic time as the notion of
“reasonable”: because this is not working so well. See Remark 5 below.

1.2 First reason: To abstract from coding issues

One of the reasons for this convention is the following remark: Most of the computer
science objects can be represented in various manners, but transforming one rep-
resentation into the other is doable in a time that remains polynomial in the size of
the encoding.

The class of polynomial being stable by composition, this implies that an algo-
rithm that is polynomial with respect to a given representation can be transformed
into a polynomial algorithm with respect to another representation.

One can then talk about efficient algorithm on these objects without having to
go to the details on how these objects are actually represented.

Example 4 A graph can be represented by a matrix, its adjacency!matrix: if the
graph has n vertices, one considers an array T of size n by n, whose element
T [i][j] ∈ {0,1} values 1 if and only if there is an edge between the vertex i and the
vertex j .

One can also represent a graph by an adjacency!list: To represent a graph
with n vertices, one considers n lists. The list number i encodes the neighbours
of vertex number i .

One can go from one representation to the other in a time that is polynomial
in the size of each: This is left to the reader to get convinced of this fact in her or
his preferred programming language.

An efficient algorithm for one of the representation can always be transformed
into an efficient algorithm for the other representation: One just needs to start
by possibly converting the representation to the representation on which the al-
gorithm works.

Furthermore, for the same reasons, as all of these graph representations remain
polynomial in n, by using the fact that a graph with n vertices has at most n2 vertices,
an algorithm polynomial in n is nothing but an efficient algorithm on graphs, that is
to say on any of the previous representations, or any usual representations of graphs.

1And actually, there were others previously.

1. THE NOTION OF REASONABLE TIME 5

1.3 Second reason: To abstract from the computational model

Another deep reason is the following: Let’s come back to Chapter 7. We have proved
that all computational models considered in this latter chapter can simulate one the
other: RAM machines, Turing machines, 2 stacks machines, counters machines.

If we put aside the counters machines whose simulation is particularly ineffi-
cient, and whose interest is perhaps mainly only theoretical, we can observe that
a number t of instructions for one model can be simulated using a number poly-
nomial in t of instructions for the other. The class of polynomial being stable by
composition, this implies that, possibly by simulating one model by the other, an
algorithm that is polynomial in one model of computation can be transformed into
a polynomial algorithm for any of the other models of computation.

We can then talk about efficient algorithms on an object without having to pre-
cise if the program is considered in one model of computation or the other2

In particular the notion of efficient algorithm is independent of the chosen pro-
gramming language: An efficient algorithm in CAML is an efficient algorithm in
JAVA, or an efficient algorithm in C.

Remark 5 We come back to Remark 3. Why don’t taking a linear time, or a
quadratic time as the notion of “reasonable”: In particular, because these no-
tions of linear and quadratic time would not satisfy the above property. Indeed,
the notion of linear time or of quadratic time is depending on the chosen model
of computation, contrary to the notion of polynomial time computability, and/or
are not closed by so nice closure properties.

For example, for linear time, a time T for a Turing machine with two tapes is
not clearly simulated in a time linear in T (This is O

(
T 2

)
, that is quadratic with

the obvious technique detailed in previous chapters, hence not linear. Notice that
if this is possible to prove that O

(
T log(T)

)
is possible if using a smart divide and

conquer technique).
For example, for quadratic time: As (T 2)2 = T 4, quadratic time is not closed

by composition, hence composing a quadratic time “reasonable” algorithm with
a quadratic time “reasonable” algorithm would not be “reasonable”.

Since the notion of efficiency is not depending of the model, one will use the
Turing machine model in all what follows: When w is a word, remember that we
write length(w) for its length.

Definition 6 (TIME(t(n))) Let t :N→N be a function. We define the class TIME(t(n))
as the class of problems (languages) decided by a Turing machine in time O (t (n)),
where n = length(w) is the size of the input.

2Most purist will observe a problem with the RAM model of Chapter 7: One must take into account in
the complexity measure the size of the integers involved in the executed elementary operations and not
only the number of instructions. But this is only details, and what is written above remains totally true,
is one forbids to RAM machines to manipulate integers of arbitrary size. Notice that this would anyway
not be reasonable with respect to the processors that they intend to model that work in practise on words
with a finite number of bits (typically 32 or 64 bits for example).

6

If one prefers, L ∈ TIME(t(n)) if there exists a Turing machine M such that:

• M decides L: for any word w , M accepts w if and only if w ∈ L, and M rejects
w if and only if w ̸∈ L;

• M takes a time bounded by O (t (n)):

– if one prefers: There are integers n0,c, and k such that for every word
w , if w is of sufficiently big size, that is to say if length(w) ≥ n0, then
M accepts or rejects using at most c ∗ t (n) steps, where n = length(w)
denotes the length of w .

Remember that we focus in this chapter and in the following (and more generally
in complexity theory) uniquely on decidable problems.

1.4 Class P

The class of problems which admit a reasonable algorithm corresponds then to the
following class:

Definition 7 (Class P) The class P is the class of problems (languages) defined
by:

P = ⋃
k∈N

TIME(nk) .

In other words P is exactly the class of problems that admit a polynomial algo-
rithm.

Here a several examples of problems in P.

Example 8 (Testing the colouring of a graph)

Input: A graph G = (V ,E), a finite set C of colours, and colour c(v) ∈ C for every
vertex v ∈V .

Answer: Decide if G is coloured with these colours: that is to say if there are no edge
of G with two extremities of the same colour.

This problem is in class P. Indeed, it is sufficient to go through the edges of the
graph and to test for each of these edges if the colour of its two extremities are the
same.

Example 9 (Evaluation in propositionnal calculus)

Input: A formula F (x1, x2, · · · , xn) of propositional calculus, some values x1, · · · , xn ∈
{0,1} for each of the variables of the formula.

Answer: Decide whether the formula F evaluates to true for this value of these vari-

2. COMPARING PROBLEMS 7

ables.

This problem is in class P. Indeed, given some formula of propositional calcu-
lus F (x1, · · · , xn) and some values x1, x2, · · · , xn ∈ {0,1}, it is easy to compute the
truth value of F (x1, · · · , xn). This is done in a time that one can easily check to be
polynomial in the size of the input: Basically, one evaluates the formula induc-
tively by propagating the truth value of variables and constants through logical
operators (and, or, and negations) of the formula.

Many other problems are in P.

2 Comparing problems

2.1 Motivation

It turns out however that there is a whole class of problems for which we did not
succeed up to today to prove formally that this is not possible.

This is historically what leaded to consider the class of problems that we call NP,
that we will consider in the following sections.

Some example of problems in this class are the following:

Example 10 (k-COLORABILITY)

Input: A graph G = (V ,E) and some integer k.

Answer: Decide if there exists a colouring of the graph using at most k colours: that
is to say decide if there exists a way to colour the vertices of G with at most
k colours to obtain a colouring of G.

Example 11 (SAT, Satisfaction in proposititionnal calculus)

Input: A formula F (x1, · · · , xn) of propositional calculus.

Answer: Decide if F is satisfiable: that is to say if there exists x1, · · · , xn ∈ {0,1}n such
that F evaluates to true with this value of the variables x1, · · · , xn .

Example 12 (HAMILTONIAN CIRCUIT)

Input: A graph G = (V ,E) (non-oriented).

Answer: Decide if there exists a Hamiltonian circuit in G, that is to say decide if
there exists a path that goes through, once and exactly once, every vertex

8

and that comes back to its starting point.

For the three problems, some exponential time algorithm is known: test all the
ways to colour the vertices for the first, or all the values of {0,1}n for the second, or all
the paths for the last one. For the three problems, one does not know any efficient
algorithm, and one has not succeeded to prove that there is none at this date.

As we will see, one can however prove that these three problems are equivalent
with respect to their level of difficulty, and this will lead to consider the notion of
reduction, that is to say to compare the hardness of problems.

Before, let’s precise a few things.

2.2 Remarks

In this chapter and in the next chapter, we will essentially only talk about decision
problems, that is to say about problems whose answer is either “true” or “false”: See
Definition 9.9.

Example 13 “Sort n numbers” is not a decision problem: The output is a list of
sorted numbers.

Example 14 “Given a graph G = (V ,E), determine the number of colours to colour
G” is not a decision problem, as the output is some integer. One can however for-
mulate this problem as a decision problem, of type “Given a graph G = (V ,E),
and some integer k, determine if the graph G admits a colouring with less than
k colours”: This is the problem k-COLORABILITY.

Before talking about reductions, we must talk about functions computable in
polynomial time: This is the expected notion, even if we are force to provide the
details as we have not done it yet.

Definition 15 (Function computable in polynomial time) Let Σ and Σ′ be two
alphabets. A (total) function f : Σ∗ → Σ′∗ is computable!in polynomial time if
there exists a Turing machine Turing A, working over alphabet Σ∪Σ′, and some
integer k, such that for every word w, A with input w terminates in time O

(
nk

)
with, at the moment it stops, f (w) written on its tape, where n = length(w).

The following result is easy to establish:

Proposition 16 (Stability by composition) The composition of two functions com-
putable in polynomial time is computable in polynomial time.

2.3 The notion of reduction

This permits to introduce the notion of reduction between problems (similar to the
one of chapter 9, except that we are talking about computability in polynomial time

2. COMPARING PROBLEMS 9

T RU E

F ALSE

T RU E

F ALSE

Problem A Problem B

Figure 1: The reductions transform positive instances to positive instances and neg-
ative instances to negative instances.

Instance of

problem A
f Instance of

problem B
Algorithm yes

no

Figure 2: Reduction from problem A to problem B . If one can solve problem B in
polynomial time, then one can solve problem A in polynomial time. The problem A
is hence at least as easy as problem B , denoted by A ≤ B .

instead of just computability): the idea is that if A reduces to B , then problem A is
at least as easy as problem B , or if one prefers, the problem B is at least as hard as
problem A: See Figure 2 and Figure 1.

Definition 17 (Reduction) Let A and B two problems of respective alphabets
ΣA and ΣB . A reduction from A to B is a function f : Σ∗

A → Σ∗
B computable in

polynomial time such that w ∈ A if and only if f (w) ∈ B. We write A≤B when A
reduces to B.

This behaves as expected: A problem is at least as easy (and hard) as itself, an the
relation “being at least as easy as” is transitive. In other words:

Theorem 18 ≤ is a preorder:

1. L≤L;

2. L1 ≤ L2, L2 ≤ L3 implies L1 ≤ L3.

Proof: Consider the identity function as function f for the first point.

10

For the second point, suppose L1 ≤ L2 via the reduction f , and L2 ≤ L3 via the
reduction g . We have x ∈ L1 if and only if g (f (x)) ∈ L2. It is then sufficient to see that
g ◦ f , provides the reduction, and is computable in polynomial time, since it is the
composition of two functions computable in polynomial time. □

Remark 19 It is not an order, since L1 ≤ L2, L2 ≤ L1 does not imply L1 = L2.

It is then natural to introduce:

Definition 20 Two problems L1 and L2 are equivalent, denoted by L1≡L2, if L1 ≤
L2 and if L2 ≤ L1.

We have then L1 ≤ L2, L2 ≤ L1 implies L1 ≡ L2.

2.4 Applications to comparison of hardness

Intuitively, if a problem is at least as easy as a polynomial problem, then it is poly-
nomial. Formally:

Proposition 21 (Reduction) If A≤B, and if B ∈ P then A ∈ P.

Proof: Let f be a reduction from A to B . A is decided by the Turing machine
that, on some input w , compute f (w) and then simulates the Turing machine that
decides B on input f (w). Since we have w ∈ A and only if f (w) ∈ B , the algorithm is
correct, and it works in polynomial time. □

By considering the contrapositive of previous proposition, we obtain the follow-
ing formulation that says that if a problem has no polynomial algorithm, and it is at
least as easy as another one, then this latter has also no polynomial algorithm.

Proposition 22 (Reduction) If A≤B, and if A ̸∈ P then B ̸∈ P.

Example 23 We will see that the problems k-COLORABILITY, SAT and HAMILTONIAN CIRCUIT
are equivalent (and are equivalent to all the NP-complete problems). There is
hence an efficient algorithm for one of them if and only if there is one for the
other(s).

2.5 Hardest problems

If one considers a class of problems, we can introduce the notion of hardest problem
for the class, i.e. maximum for ≤. This is the notion of completeness:

Definition 24 (C -completness) Let C be class of decision problems.
A problem A is said to be C -complete, if

1. it is in class C ;

3. THE CLASS NP 11

2. every problem B of C is such that B ≤ A.

We say that a problem A if C -hard it it satisfies condition 2. of Definition 24. A
problem A is hence C -completeness if it is C -hard and in class C .

A C -complete problem is hence the most difficult, or one of the most difficult
problems of the class C . Clearly, if there are several, they are all equivalent:

Corollary 25 Let C be a class of languages. All the C -complete problems are
equivalent.

Proof: Let A and B two C -complete problems. Apply condition 2 of Definition 24 to
A with respect to B ∈C , and to B with respect to A ∈C . □

3 The class NP

3.1 The notion of verifier

The problems k-COLORABILITY, SAT and HAMILTONIAN CIRCUIT mentioned pre-
viously have a common point: While it is not clear that they admit a polynomial
algorithm, it is very clear that they admit a polynomial verifier.

Definition 26 (Verifier) A verifier for a problem A is an algorithm (i.e. Turing
machine) V such that

A = {w |V accepts 〈w,u〉 for some word u}.

The verifier is polynomial if algorithm V decides its answer in a time poly-
nomial in the length of w. One say that a language is polynomially verifiable if
it admits a polynomial verifier.

The word u is called a certificate (sometimes also a proof , or a witness) for w . In
other words, a verifier is using one more information, namely u, to check that w is
in A.

Remark 27 Observe that one can always restrict to certificates of length poly-
nomial in the length of w, since in a time polynomial in the length of w the
algorithm V will not read more than a polynomial number of symbols of the
certificate.

Example 28 A certificate for the problem k-COLORABILITY is given by some
colours for all the vertices.

We will not always provide so many details, but here is the justification: Indeed, a
graph G is in k-COLORABILITY is and only if one can find some word u that encodes
the colours for all the vertices and all these colours provide a correct colouring: The
algorithm V , i.e. the verifier, given 〈G ,u〉, is only checking that the colouring corre-
sponding to u is correct. This can be done in a time polynomial in the size of the
graph: See discussion of Example 8.

12

Example 29 A certificate for the problem SAT is constituted of a value x1, . . . ,
xn ∈ {0,1} for each of the variables of the formula F : The verifier needs only to
check that these values satisfy the formula F . This can be done in a time polyno-
mial in the size of the formula: See example 9.

Example 30 A certificate for the problem HAMILTONIAN CIRCUIT is consti-
tuted by a circuit. The verifier needs only to check that the circuit is Hamiltonian.
This can be done in a time polynomial in the size of the graph.

This leads to the following definition:

Definition 31 NP is the class of problems (languages) that have a polynomial
verifier.

This class is important that it turns out that it contains an incredible number of
problems of practical interest. It contains k-COLORABILITY, SAT and HAMILTONIAN CIRCUIT
but also many other problems: See for example all the examples of the next chapter.

By construction, we have (as the empty word is a valid certificate for any problem
of P):

Proposition 32 P ⊆ NP.

3.2 The question P = NP?

Clearly, we have either P = NP or P⊊NP: See Figure 3.
The question to know if these two classes are equal or distinct is an impressive

challenge. First because it is one of the unsolved questions among the most (maybe
the) famous of Theoretical Computer Science that have been challenging research
for the last 50 years: It has been selected in the list of the most important questions
for Mathematics and Computer Science in 2000. The Clay Mathematics Institute
offers 1 000 000 dollars to the person that will determine the answer to this question.

But mainly, if P = NP, then all the problems polynomially verifiable would be de-
cidable in polynomial time. Most of the people think that the two classes are distinct
since there are a very huge number of problems for which nobody have succeeded
to provide a polynomial algorithm for more than 40 years.

It has also an impressive economical impact, since many systems, including to-
day’s cryptographic systems are based on the hypothesis that these two classes are
distinct. If it is not the case, many considerations about these systems would col-
lapse, and numerous cryptographic techniques would have been to be revisited.

3.3 Non-deterministic polynomial time

Let’s first do a small parenthesis on terminology: The “N” in NP comes from non
deterministic (and not from not as many often believe), because of the following
result:

3. THE CLASS NP 13

P

NP

P = NP

Figure 3: One of the two possibilities is correct.

Theorem 33 A problem is in NP if and only if it is decided by a non-deterministic
Turing machine in polynomial time.

Remember that we have introduced the non-deterministic Turing machines in
Chapter 7. We say that a language L ⊂ Σ∗ is decided by the non-deterministic ma-
chine M in polynomial time if M decides L and M takes a time bounded by O (t (n)):
There are integers n0,c, and k such that for all words w of sufficiently big size, i.e.
n = length(w) ≥ n0, M admits a computations that accepts in less than c ∗nk steps,
and for w ̸∈ L, all the computations of M lead to a rejecting configuration in less than
c ∗nk steps.

Proof: Consider a problem A of NP. Let V be the associated verifier, that runs
in polynomial time p(n). We build a non-deterministic Turing machine M , that, on
some word w , will produce in a non-deterministic way a word u of length p(n), and
then will simulate V on 〈w,u〉: If V accepts, then M accepts. If V rejects, then M
rejects. The machine M decides A.

Conversely, let A be a problem decided by a non-deterministic Turing machine
M in polynomial time p(n). As in the proof of Proposition 7.23 in Chapter 9, we can
state that the non-deterministic degree of the machine is bounded by some integer
r , and that the sequence of the non-deterministic choices made by the machine M
up to time t can be encoded by a sequence of length t of integers between 1 and (at
most) r .

Consequently, a sequence of integers of length p(n) between 1 and r is a valid
certificate for a word w : Given w and a word u encoding such a sequence, a ver-
ifier V can easily check in polynomial time if the machine M accepts w with this
sequence of non-deterministic choices. □

More generally, we define:

Definition 34 (NTIME(t(n))) Let t : N→ N be a function. We define the class
NTIME(t(n)) as the class of problems (languages) decided by a non-deterministic
Turing machine in time O (t (n)), where n is the size of the input.

14

Corollary 35
NP = ⋃

k∈N
NTIME(nk) .

3.4 NP-completeness

It turns out that the class NP contains a very huge number of complete problems.
The following chapter presents a whole list of such problems.

The difficulty is to succeed to produce a first such problem. This is the object of
the Cook and Levin’s theorem.

Theorem 36 (Cook-Levin) The problem SAT is NP-complete.

We will prove this theorem in the next section.
Let’s first start by reformulating what this means.

Corollary 37 P = NP if and only if SAT ∈ P.

Proof: Since SAT is in NP, if P = NP, then SAT ∈ P.
Conversely, since SAT is NP-complete, for any problem B ∈ NP, B ≤ SAT and so

B ∈ P if SAT ∈ P by Proposition 21. □
What we have just done is true for any NP-complete problem.

Theorem 38 Let A be a NP-complete problem.
P = NP if and only if A ∈ P.

Proof: Since A is complete it is in NP, and hence if P = NP, then A ∈ P. Con-
versely, since A is NP-hard, for any problem B ∈ NP, B ≤ A and hence B ∈ P if A ∈ P
by Proposition 21. □

Remark 39 We hence see the importance of producing NP-complete problems
for proving P ̸= NP: Producing a problem for which one could succeed to prove
that there is no polynomial time algorithm. At this day, none of the thousand of
known NP-complete problems have provided a way to prove that P ̸= NP.

Remark 40 Remember that all the complete problems are equivalent by Corol-
lary 25.

3.5 A method to prove NP-completeness

The NP-completeness of a problem is established in the quasi-totality of the cases
as follows:

In order to prove the NP-completeness of a problem A, it is sufficient:

4. TWO EXAMPLES OF PROOFS OF NP-COMPLETENESS 15

P problems

NP-complete problems

NP problems

Figure 4: Situation with hypothesis P ̸= NP.

1. to prove that it is in NP;

2. and to prove that B ≤ A for some problem B that is known to be NP-
complete.

Indeed, the point 1. guarantees that B ∈ NP, and point 2. guarantees that for any
problem C ∈ NP we have C ≤ A: Indeed by the NP-completeness of B we have C ≤ B ,
and since B ≤ A, we obtain C ≤ A.

Remark 41 Be careful, the NP-completeness of a problem A is obtained by prov-
ing that is is at least as hard as another NP-complete, and not the contrary. This
is a frequent error.

The following chapter is devoted to many applications of this strategy on various
problems.

4 Two examples of proofs of NP-completeness

We apply the above strategy to prove the that 3-SAT is NP-complete.

4.1 Proof of the NP-completeness of 3-SAT

Definition 42 (3-SAT)

Input: A set of variables {x1, · · · , xn} and a formula F =C1 ∧C2 · · ·∧Cℓ with Ci =
yi ,1 ∨ yi ,2 ∨ yi ,3, where for every i , j , yi , j is either xk , or ¬xk for one of the
xk .

Answer: Decide whether F is satisfiable, that is, decide if there exist x1, · · · , xn ∈

16

{0,1}n such that F evaluates to true with this value of its variables x1, · · · , xn .

Theorem 43 The problem 3-SAT is NP-complete.

Proof: First note that 3-SAT is in NP. Indeed, given an assignment of the truth value
of the variables, it is easy to check in polynomial time that the formula is true with
these values of the variables.

We will reduce SAT to 3-SAT. Let F be a CNF-formula. Let C be a clause of F , say
C = x ∨ y ∨ z ∨u ∨ v ∨w ∨ t . We introduce new variables a,b,c,d associated to this
clause, and we replace C by the formula

(x ∨ y ∨a)∧ (¬a ∨ z ∨b)∧ (¬b ∨u ∨ c)∧ (¬c ∨ v ∨d)∧ (¬d ∨w ∨ t).

It is easy to check that an assignment of x, y, z can be completed to an assign-
ment of a,b,c,d that satisfies this formula if and only if C is true. By applying this
construction to every clause of F , and by taking the conjunction of the formulas
constructed in that way, we obtain a CNF-formula F ′ in which every clause has at
most 3 literals whose satisfiability is equivalent to that of F .

The computation time reduces to writing the clauses, whose length is polyno-
mial. Consequently, the whole reduction can be computed in polynomial time, and
we proved, starting from SAT that 3-SAT is NP-complete. □

4.2 Proof of the NP-completeness of 3-COLORABILITY

Remember that a colouring of a graph is an assignment of colours to vertices of the
graph such that no edge has its extremities of the same colour.

Definition 44 (3-COLORABILITY)

Input: An undirected graph G = (V ,E).

Answer: Decide if there exists a colouring of the graph that uses at most 3 colours.

Theorem 45 The problem 3-COLORABILITY is NP-complete.

Proof: 3-COLORABILITY is in NP, since given a colour for each of the vertices, it
is easy to check in polynomial time if this is a (valid) colouring with at most 3 colours.

We reduce 3-SAT to 3-COLORABILITY. We hence suppose that a conjunction of
m clauses with 3 literals is given, over n variables, and we have to produce a graph
(with the expected properties to get a reduction). As in all reductions from 3-SAT, we
have to express two constraints: first, that a variable can only take either the value 0
or 1, and second, the evaluation rules of clauses.

We construct a graph with 3 + 2n + 5m vertices, the first three (called distin-
guished vertices in what follows) are denoted by T RU E , F ALSE , DON T K NOW .

4. TWO EXAMPLES OF PROOFS OF NP-COMPLETENESS 17

These three vertices are linked two by two in a triangle Thus, in a colouring these
three vertices must all have different colours.

We associate a vertex to every variable and to the negation of every variable. To
make sure that a variable takes the value T RU E or F ALSE , for every variable xi ,
we add a triangle whose vertices are xi , ¬xi , and DON T K NOW . This makes sure
that in a colouring we must have colour (xi) = colour (T RU E) and colour (¬xi) =
colour (F ALSE), or colour (xi) = colour (F ALSE) and colour (¬xi) = colour (T RU E),
where of course, colour (v) denotes the colour of vertex v .

It remains to encode the evaluation rules of the clauses. To do so, we introduce
the following subgraph, for every clause x ∨ y ∨ z:

z 1

T RU E

0

2

4

3x

y

It can be checked that if this pattern (where the three distinguished vertices with
above mentioned triangles are implicit) is 3-colourable, then the vertices 0 and 1
are colour (F ALSE) and colour (DON T K NOW). IF 1 is colour (F ALSE) since a
vertex corresponding to a variable must be T RU E or F ALSE , we have colour (z) =
colour (T RU E). If 0 is colour (F ALSE), then 2 cannot be colour (F ALSE), so 3 or 4
is, and the corresponding variable is coloured colour (T RU E).

Conversely, if one of the variables is true, one can then easily construct a 3-
colouration of the pattern.

Consider then the graph formed of the three distinguished vertices, of the trian-
gles formed on these variables, and the given patterns. If this graph is 3-colourable,
then in particular every subgraph is colourable. The triangles of variables are in par-
ticular colourable. From a 3-colouring of the graph, one constructs a truth assign-
ment by setting to 1 all variables coloured with colour (T RU E). This assignment is
coherent (a variable and its negation have opposite values) and at least one literal for
each clause is set to 1, according to the properties of the pattern above. Conversely,
given an assignment of truth values, it is easy to deduce a 3-colouring of the graph.

The existence of a 3-colouring of the graph is hence equivalent to the satisfiabil-
ity of the initial formula.

The reduction is clearly polynomial; hence, we have shown that 3-SAT reduces
to 3-COLORABILITY. The latter is hence NP-complete. □

4.3 Proof of the Cook-Levin theorem

We cannot use the above method to prove the NP-completeness of SAT, as we do not
now at this moment any NP-complete problem to reduce from.

We need to do the proof in another way, by coming back to the definition of NP-
completeness: one must first prove that SAT is in NP, and second that any other
problem A from NP satisfies A ≤ SAT.

18

The fact that SAT is in NP has already been established, see example 29.
Consider a problem A of NP, and an associated verifier V . The idea (which has

similarities with the constructions of Chapter 10) is given a word w , to construct a
formula of propositional calculus γ = γ(u) which encodes the existence of an ac-
cepting computation of V on 〈w,u〉 for a certificate u.

We will build a series of formulas whose culminating point will be formula γ =
γ(u) that will code the existence of a sequence of configurations C0,C1, · · · ,Ct of M
such that:

• C0 is the initial configuration of V on 〈w,u〉;

• Ci+1 is the successor configuration of Ci , according to the transition function
δ of Turing machine V , for i < t ;

• Ct is an accepting configuration.

In other words, the existence of a valid space-time diagram corresponding to a
computation of V on 〈w,u〉.

By observing that the obtained propositional formula γ remains of size polyno-
mial in the size of w , and can indeed be obtained by a polynomial algorithm from w ,
we will have shown the theorem: Indeed, we will get w ∈ L if and only if there exists
u that satisfies γ(u), that is to say A ≤ SAT via the function f that to w associates
γ(u).

It only remains to provide the tedious details of the construction of formula γ(u).
By hypothesis, V runs in time p(n) polynomial in the size n of w . In that time, V
cannot move its head more than p(n) cells to the left or p(n) cells to the right. We
can hence restrict to a sub-rectangle of size (2∗p(n)+1)×p(n) from the space-time
diagram of the computation of V on 〈w,u〉, see Figure 5.

The cells of array T [i , j] corresponding to the space-time diagram are elements
of finite set C = Γ∪Q. For every 1 ≤ i ≤ p(n) and 1 ≤ j ≤ 2∗p(n)+1 and for every
s ∈ C , we define a propositional variable xi , j ,s . If xi , j ,s has the value 1, that means
that the cell T [i , j] contains s.

The formula Γ is the conjunction of 4 formulas CELL∧START∧MOVE∧HALT.
The formula CELL is there to guarantee that there is exactly one symbol in every

cell.

CELL = ∧
1≤i≤p(n),1≤ j≤2p(n)+1

[(∨
s∈C

xi , j ,s

)
∧

(∧
s,t∈C ,s ̸=t

(¬xi , j ,s ∨¬xi , j ,t)

)]
.

The symbols
∧

and
∨

denote the iteration of corresponding symbols ∧ and ∨.
For example,

∨
s∈C xi , j ,s is a shortcut for formula xi , j ,s1 ∨·· ·∨xi , j ,sl if C = {s1, · · · , sl }.

If we write the word e1e2 · · ·em for the word 〈w,u〉, the formula START guarantees
that the first line corresponds to the initial configuration of V on 〈w,u〉.

START = x1,1,B ∨x1,2,B ∨·· ·∨x1,p(n)+1,q0 ∨x1,p(n)+2,e1 ∨·· ·∨x1,p(n)+m+1,em

4. TWO EXAMPLES OF PROOFS OF NP-COMPLETENESS 19

B B B B B B q0 e1 e2 . . . em B B B B B B B B B B Initial configuration

Second configuration

Third configuration

p(n)th configuration

window

2∗p(n)+1

p(n)

Figure 5: A (2p(n)+1)×p(n) array that codes the space-time diagram of the compu-
tation of V on 〈w,u〉.

∨x1,p(n)+m+2,B ∨·· ·∨x1,2p(n)+1,B.

The formula HALT guarantees that one line corresponds to an accepting config-
uration.

HALT = ∨
1≤i≤p(n),1≤ j≤2p(n)+1

xi , j ,qa .

Finally, the formula MOVE expresses that all 3× 2 sub-rectangles from array T
are legal windows: see the notion of legal window from Chapter 7.

MOVE = ∧
1≤i≤p(n),1≤ j≤2p(n)+1

LEGALi , j ,

where LEGALi , j is a positional formula that expresses that the 3×2 subformula
at position i , j is a legal window:

LEGALi , j =
∧

(a,b,c,d ,e, f)∈WINDOW
(xi , j−1,a∧xi , j ,b∧xi , j+1,c∧xi+1, j−1,d∧xi+1, j ,e∧xi , j+1, f),

where WINDOW is the set of 6-tuple (a,b,c,d ,e, f) such that if the three elements of
Σ represented respectively by a,b and c appear consecutively in a configuration Ci ,
and if d ,e, f appear consecutively at the same position Ci+1, then this is coherent
with transition function δ of Turing machine M .

20

This completes the proof, noting that each of the formulas can be written easily
(and hence can be produced in polynomial time from w) and that they remain of
size polynomial in the size of w .

5 Some other results from complexity theory

In this section, we give several additional important results on time complexity.

5.1 Decision vs. Construction

Let us start by a remark about the hypothesis that we did on the choice of restricting
to decision problems

We have talked up to now only about decision problems, that is problems whose
answer is either true or false (for example: “given a formula F decide if the formula
F is satisfiable”) in contrast to problems that consist in producing an object with a
property (for example: given a formula F , produce an assignment of the variables
that makes it true if there exists one).

Clearly, producing a solution is at least as hard as deciding if there exists one,
and hence if P ̸= NP, none of the two problems has a solution in polynomial time,
and the same holds for any NP-complete problem.

However, if P = NP, it turns out that we can also produce a solution:

Theorem 46 Assume that P = NP. Let L be a problem of NP and V the associated
verifier. One can construct a Turing machine that on any input w ∈ L produces
in polynomial time a certificate u for w for verifier V .

Proof: Let us start by proving the theorem for L being the satisfaction problem
of propositional formula (so the problem SAT). Assume P = NP. Then one can then
test if a propositional formula F with n variables is satisfiable or not in polynomial
time. If it is satisfiable, then one can fix its first variable to 0 and test if the obtained
formula F0 is satisfiable. If it is, then we write 0 and then restart recursively with this
formula F0 with n − 1 variables. Otherwise, necessarily any certificate must have
its first variable set to 1. Write 1 and start recursively with formula F1 whose first
variable is fixed to 1, and that has n −1 variables. Since it is easy to check if a for-
mula without any variable is satisfiable, by this method, a correct certificate will be
produced.

Now if L is an arbitrary language of NP, we can use the fact that the reduction
produced by the proof of the Cook-Levin theorem is a Levin reduction: Not only
do we have w ∈ L if and only if f (w) is a satisfiable formula, but one can find a
certificate for w from a certificate of the satisfiability of formula f (w). One can then
use the previous algorithm to find the certificate for L. □

What we used in the above proof is the fact that the satisfiability problem of a
CNF-formula is self-reducible to instances of lower size.

5. SOME OTHER RESULTS FROM COMPLEXITY THEORY 21

5.2 Hierarchy theorems

We say that a function f (n) ≥ n log(n) is time constructible, if the function that sends
1n to the binary representation of 1 f (n) is computable in time O

(
f (n)

)
.

Most of the usual functions are time constructible, and in practice this is not
really a restriction.

Remark 47 For example, n
p

n is time constructible: On input 1n , one starts by
counting the number of 1 in binary. One can use for that a counter, which re-
mains of size log(n), that one increments: This is hence done in time O

(
n log(n)

)
since one uses at most O

(
log(n)

)
steps for every letter of the input word. One

can then compute ⌊n
p

n⌋ in binary from the representation of n. Any standard
method for doing so runs in time O

(
n log(n)

)
, since the size of the involved num-

bers is O
(
log(n)

)
.

Theorem 48 (Time Hierarchy theorem) For every time constructible function
f :N→N, there exists a language L that is decidable in time O

(
f (n)

)
but not in

time o(f (n)/ log f (n)).

Proof: The proof is a generalization of the idea of the proof of Theorem 14.25 of
next chapter: We invite our reader to wait and start by this latter proof.

We prove a version weaker than the statement above. Let f : N→ N be a time
constructible function.

One considers the (very artificial) language L that is decided by the following
Turing machine B :

• on an input w of size n, B computes f (n) and memorize 〈 f (n)〉 the binary
encoding of f (n) in a binary counter c;

• If w is not of the form 〈A〉10∗, for some Turing machine A, then Turing ma-
chine B rejects.

• Otherwise, B simulates A on the word w for f (n) steps to determine whether
A accepts in a time less than f (n):

– If A accepts in this time, then B rejects;

– otherwise B accepts.

In other words, B simulates A on w , step by step, and decrements the counter c
at each step. If this counter reaches 0 or if A rejects, then B accepts. Otherwise, B
rejects.

By the existence of a universal Turing machine, there exist integers k and d such
that L is decided in time d × f (n)k .

Suppose that L is decided by a Turing machine A in time g (n) with g (n)k =
o(f (n)). There must exists an integer n0 such that for n ≥ n0, we have d × g (n)k <
f (n).

22

As a consequence, the simulation of A by B will indeed be complete on some
input of size n0 or more.

Consider what happens when B is run on the input 〈A〉10n0 . Since this input is of
size greater than n0, B answers the opposite of Turing machine A on the same input.
Hence B and A are not deciding the same language, and hence Turing machine A is
not deciding L, which leads to a contradiction.

As a consequence L is not decidable in time g (n) for any function g (n) with
g (n)k = o(f (n)).

The theorem is a generalization of this idea. The (inverse) factor log(f (n)) comes
from the construction of a universal Turing machine that is more efficient than the
one considered in this document, introducing only a logarithmic time slow-down.

□
Formulating the above theorem differently, we get:

Theorem 49 (Time Hiearchy theorem) Let f , f ′ : N→ N be time constructible
functions such that f (n) log(f (n)) = o(f ′(n)). Then the inclusion TIME(f(n)) ⊊
TIME(f’(n)) is strict.

We obtain for example:

Corollary 50 TIME(n2)⊊TIME(nlogn)⊊TIME(2n).

We define:

Definition 51 Let
EXPTIME = ⋃

c∈N
TIME(2nc

) .

We obtain:

Corollary 52 P⊊ EXPTIME.

Proof: Any polynomial becomes eventually negligible smaller than 2n , and hence
P is a subset of TIME(2n). Now, TIME(2n), that contains all P is strict subset of, for
example, TIME(2n3

), that is included in EXPTIME. □

5.3 EXPTIME and NEXPTIME

Consider
EXPTIME = ⋃

c≥1
TIME(2nc

)

and
NEXPTIME = ⋃

c≥1
NTIME(2nc

) .

We can prove the following result (and this is not hard):

6. ONE THE MEANING OF THE P = N P QUESTION 23

Theorem 53 If EXPTIME ̸= NEXPTIME then P ̸= NP.

6 One the meaning of the P = N P question

We make a digression about the meaning of the P vs. NP question in relation to proof
theory and other chapters of this document.

One can see NP as the class of languages such that testing the containment to it
is equivalent to determining if there is a short (polynomial size) certificate. This can
be related to the existence of a proof in mathematics. Indeed, in its own principle,
mathematical deduction consists in proving theorems starting from axioms.

One expects that the validity of a proof is easy to check: one only needs to check
that each line of the proof is a consequence of the previous lines, in the proof system.
Actually, in most of the axiomatic proof systems (for example in all the proof systems
we have seen) this verification can be done in a time that remains polynomial in the
length of the proof.

Consequently, the following decision problem is NP for all the particular ax-
iomatic usual proof systems A , and in particular for the one A that we have seen
for the predicate calculus.

THEOREMS = {〈φ,1n〉|φ has a proof of length ≤ n

in system A }.

We leave to our reader the following exercise:

Exercise 1 The set theory of Zermelo-Fraenkel is one of the axiomatic sys-
tems that allows axiomatizing mathematics with a finite description. (Even
without knowing all the details of the set theory of Zermelo-Fraenkel) ar-
gue at a high level that the problem THEOREMS is NP-complete for the set
theory of Zermelo-Fraenkel.

Hint: the satisfiability of a Boolean circuit is particular statement.

In other words, in virtue of Theorem 46, the P = NP question is the one (that has
been asked for the first time by Kurt Gödel) to know whether there exists a Turing
machine that is able to produce a mathematical proof of all statements φ in a time
polynomial in the length of its proof.

Does this seem reasonable?

What is the meaning of the NP = coNP question? Remember that coNP is the class
of languages whose complement is in NP. The question NP = coNP, is related to the
existence of short proofs (of certificates) for statements that do not seem to have
one: for example, it is easy to prove that propositional formula is satisfiable (one
produces a valuation of its inputs, that one can encode in a proof that says that by
propagation of the inputs towards the outputs, that the circuit outputs 1). On the

24

other hand, in the general case, it is not clear how to write a short proof that a given
propositional formula is not satisfiable. If NP = coNP, there must always exist one:
The question is related to the existence of way proving the non-satisfiability of a
propositional formula different from usual methods.

One can formulate equivalent statements for all the mentioned NP-complete
problems.

7 Exercises

Exercise 2 Prove that class P is closed under union, concatenation and com-
plement.

Exercise 3 Prove that class NP is closed under union and concatenation.

Exercise 4 (solution on page 238) Prove that if NP is different from its com-
plement then P ̸= NP.

Exercise 5 Prove that if P = NP then all languages A ∈ P except for A = ;
and A =Σ∗ are NP-complete.

8 Bibliographic notes

Suggested readings To go further with the notions of this chapter, we suggest to
read the books [Sipser, 1997], [Papadimitriou, 1994] [Lassaigne & de Rougemont, 2004].

A reference book that contains the last results of the domain is [Arora & Barak, 2009].

Bibliography This chapter contains some standard results in complexity. We es-
sentially used their presentation in [Sipser, 1997], [Poizat, 1995], [Papadimitriou, 1994].
The last part “discussion” is taken from [Arora & Barak, 2009].

Index

≡, 10
≤, 9, 10
coNP, 23
3-COLORABILITY, 16

adjacency
list, 4
matrix, 4

algorithm
efficient, see efficient algorithm

C -completeness, see completeness
C-hardness, see completeness
certificate, 11, 20, 23
CIRCUIT HAMILTONIAN, 12
COLORABILITY, 7
colouring of a graph, 6, 7, 16
completeness, 10, 11
computable

in polynomial time, 8
computation

time, 3
constructible

in time , see time constructible func-
tion

Cook-Levin theorem, 14

efficient, 3–5, 8
algorithm, 3

equivalence
between problems, 11, 14

EXPTIME, 22, 23

function
time constructible, see time constructible

function

graph, 4

representation, see adjacency list or
adjacency matrix

HAMILTONIAN CIRCUIT, 11
Hamiltonian circuit of a graph, 7
hard, see completeness
hierarchy

time , see time hierarchy theorem

k-COLORABILITY, 11, 12

language
decided by a Turing machine

non-deterministic, 13
legal window, 19
Levin reduction, 20

NEXPTIME, 22, 23
NP, 12–14, 23
NP, 12, 14, 17
NP-completeness, 3, 14, 16, 17
NTIME(), 13

P, 6, 12
polynomially verifiable, 11
problem, 20

of decision, 8, 20
proof, 11

reasonable, 3, 4
reduction, 8, 9

Levin, see Levin reduction

SAT, 7, 11, 12, 14, 17, 20
satisfaction

of a formula, 15, 16
satisfiability

of a formula, 7

25

26 INDEX

satisfiable
(for a formula), see satisfiability of a

formula
self-reducible problem, 20

TIME(), 5
time

constructible function, 21
hierarchy theorem, 21, 22

Turing machine
non-deterministic, 13

verifier, 11

witness, 11

Zermelo-Fraenkel, 23

Bibliography

[Arora & Barak, 2009] Arora, S. & Barak, B. (2009). Computational Complexity: A
Modern Approach. Cambridge University Press. https://doi.org/10.1017/
cbo9780511804090

[Kleinberg & Tardos, 2006] Kleinberg, J. M. & Tardos, É. (2006). Algorithm design.
Addison-Wesley.

[Lassaigne & de Rougemont, 2004] Lassaigne, R. & de Rougemont, M. (2004). Logic
and complexity. Discrete Mathematics and Theoretical Computer Science.
Springer. https://doi.org/10.1007/978-0-85729-392-3

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley.

[Poizat, 1995] Poizat, B. (1995). Les petits cailloux: Une approche modèle-théorique
de l’Algorithmie. Aléas Editeur.

[Sipser, 1997] Sipser, M. (1997). Introduction to the Theory of Computation. PWS
Publishing Company.

27

https://doi.org/10.1017/cbo9780511804090
https://doi.org/10.1017/cbo9780511804090
https://doi.org/10.1007/978-0-85729-392-3

	The notion of reasonable time
	Convention
	First reason: To abstract from coding issues
	Second reason: To abstract from the computational model
	Class P

	Comparing problems
	Motivation
	Remarks
	The notion of reduction
	Applications to comparison of hardness
	Hardest problems

	The class NP
	The notion of verifier
	The question P= NP?
	Non-deterministic polynomial time
	NP-completeness
	A method to prove NP-completeness

	Two examples of proofs of NP-completeness
	Proof of the NP-completeness of 3-SAT
	Proof of the NP-completeness of 3-COLORABILITY
	Proof of the Cook-Levin theorem

	Some other results from complexity theory
	Decision vs. Construction
	Hierarchy theorems
	EXPTIME and NEXPTIME

	One the meaning of the P=NP question
	Exercises
	Bibliographic notes

