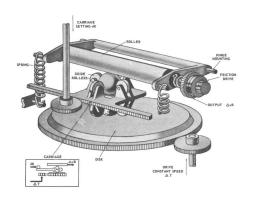
Cours 6: Calculabilité.



Olivier Bournez bournez@lix.polytechnique.fr Ecole Polytechnique CSC_INF41012_EP

Rappel

- Demain, Mercredi 2 Octobre. PC Notée
 - ► 8h07-10h07 : groupes 8h00.
 - ► 10h08-12h08 : groupes 10h15.
- Salle habituelles
- Tous les documents sont autorisés.
- Programme : logique, calculabilité = INF412 jusqu'à aujourd'hui.

Au menu

Indécidabilité

Autres problèmes indécidables

Thèse de Church : Encore et encore

Calculabilité

Problèmes indécidables dans d'autres contextes

La suite...

Indécidabilité

Retours sur l'épisode précédent

Digression

Retour sur l'épisode précédent : un premier problème indécidable

Problèmes semi-décidables

Le paysage de la calculabilité

On a établi : Il existe des problèmes de décision qui ne sont pas décidables.

► Une preuve plus simple?

Indécidabilité

Retours sur l'épisode précédent

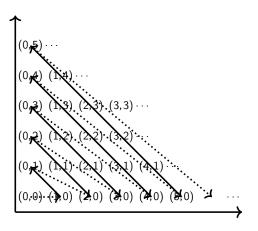
Digression

Retour sur l'épisode précédent : un premier problème indécidable

Problèmes semi-décidables

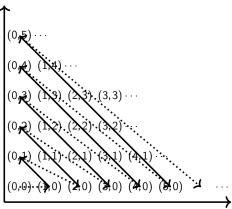
Le paysage de la calculabilité

 \blacksquare \mathbb{N}^2 est dénombrable :



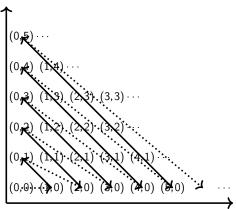
ı

 \mathbb{N}^2 est dénombrable :



 $\ \ \Sigma^*$ (les mots finis sur l'alphabet $\Sigma)$ est dénombrable, lorsque Σ est dénombrable :

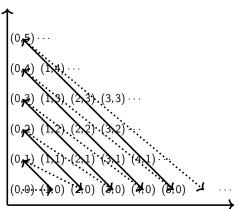
 \mathbb{N}^2 est dénombrable :



- Σ * (les mots finis sur l'alphabet Σ) est dénombrable, lorsque Σ est dénombrable :
 - ▶ par exemple, on peut coder une suite finie $u_0u_1u_2...$ par $2^{u_0}3^{u_1}5^{u_2}...$

Ļ

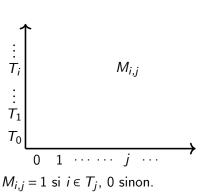
 \mathbb{N}^2 est dénombrable :



- Σ * (les mots finis sur l'alphabet Σ) est dénombrable, lorsque Σ est dénombrable :
 - ▶ par exemple, on peut coder une suite finie $u_0u_1u_2...$ par $2^{u_0}3^{u_1}5^{u_2}...$
- N×Σ* est dénombrable.

Ensembles non-dénombrables : argument de Cantor

 $-\mathscr{P}(\mathbb{N})$ n'est pas dénombrable.



- Par l'absurde, si $\mathscr{P}(\mathbb{N}) = \{T_0, T_1, T_2, \dots, \}$, on pourrait considérer $T^* = \{j | M_{i,j} = 0\}$.
- Cette partie de N n'est pas dans l'énumération, car sinon elle devrait avoir un numéro j₀:
 - si j₀ ∈ T*, alors on devrait avoir
 M_{j₀,j₀} = 1 par définition de M, et
 M_{j₀,j₀} = 0 par définition de T*:
 impossible.
 - Si j₀ ∉ T*, alors on devrait avoir
 M_{j₀,j₀} = 0 par définition de M, et
 M_{j₀,j₀} = 1 par définition de T*:
 impossible.
- L'ensemble des langages sur un alphabet Σ^* n'est pas dénombrable, même si Σ est fini.

5

Corollaire

Il existe des problèmes de décision qui ne sont pas décidables.

Corollaire

Il existe des problèmes de décision qui ne sont pas décidables.

■ Preuve : Il y a un nombre non dénombrable de problèmes de décision, et un nombre dénombrable de machines de Turing.

ò

Corollaire

Il existe des problèmes de décision qui ne sont pas décidables.

C'est grave?

Indécidabilité

Retours sur l'épisode précédent

Digression

Retour sur l'épisode précédent : un premier problème indécidable

Problèmes semi-décidables

Le paysage de la calculabilité

Le langage universel

- On appelle langage universel, le problème de décision suivant :
 - ► Problème L_{univ}:

Donnée: • Le codage $\langle M \rangle$ d'une machine de Turing M

• et un mot w.

Réponse: Décider si la machine M accepte le mot w.

Théorème

Le problème L_{univ} n'est pas décidable.

Démonstration :

- Par l'absurde : si L_{univ} est décidé par une machine de Turing A, on peut alors construire une machine de Turing B qui fonctionne de la façon suivante :
 - B prend en entrée un mot (C) codant une machine de Turing C;
 - B appelle la machine de Turing A sur la paire (⟨C⟩,⟨C⟩)
 (c'est-à-dire sur l'entrée constituée du codage de la machine de Turing C, et du mot w correspondant aussi à ce même codage);
 - Si la machine de Turing A accepte ce mot, B refuse.
 - Si la machine de Turing A refuse ce mot, B accepte.
- Appliquons la machine de Turing B sur le mot $\langle B \rangle$, c'est-à-dire sur le mot codant la machine de Turing B:
 - Si B accepte le mot (B), cela signifie, par définition de L_{univ} et de A, que A accepte ((B), (B)). Mais si A accepte ce mot, B est construit pour refuser son entrée (B). Contradiction.
 - Si B refuse le mot (B), cela signifie, par définition de L_{univ} et de A, que A refuse ((B), (B)). Mais si A refuse ce mot, B est construit pour accepter son entrée (B). Contradiction.

Indécidabilité

Retours sur l'épisode précédent

Digression

Retour sur l'épisode précédent : un premier problème indécidable

Problèmes semi-décidables

Le paysage de la calculabilité

Problèmes semi-décidables

Théorème

Le problème L_{univ} est toutefois semi-décidable :

- Un langage L⊂Σ* est dit semi-décidable (ou encore récursivement énumérable) s'il correspond à l'ensemble des mots acceptés par une machine de Turing.
- On note RE la classe des langages et des problèmes semi-décidables.

Preuve :

- Sur l'entrée ((M), w), il suffit de simuler la machine de Turing M sur l'entrée w.
 - On arrête la simulation et on accepte si l'on détecte dans cette simulation que la machine de Turing M atteint son état d'acceptation.
 - Sinon, on simule M pour toujours.

Indécidabilité

Retours sur l'épisode précédent

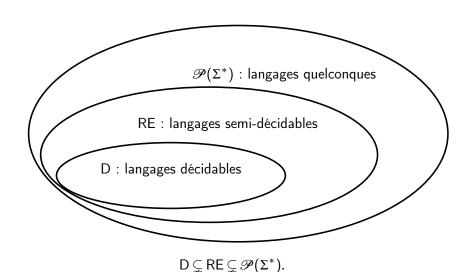
Digression

Retour sur l'épisode précédent : un premier problème indécidable

Problèmes semi-décidables

Le paysage de la calculabilité

Le paysage de la calculabilité



 $L_{univ} \in RE \setminus D$.

Au menu

Indécidabilité

Autres problèmes indécidables

Thèse de Church : Encore et encore

Calculabilité

Problèmes indécidables dans d'autres contextes

La suite...

Autres problèmes indécidables Réductions Quelques autres problèmes ind

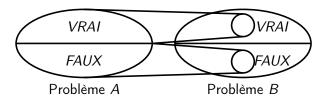
Quelques autres problèmes indécidables Théorème de Rice

- Nous connaissons un langage indécidable :
 - L_{univ}.
- Notre but est maintenant d'en obtenir d'autres, et de savoir comparer les problèmes.
- Nous introduisons pour cela la notion de réduction.

La notion de réduction

Soient A et B deux problèmes d'alphabets respectifs M_A et M_B. Une réduction de A vers B est une fonction f: M_A* → M_B* calculable telle que

$$w \in A \text{ ssi } f(w) \in B.$$

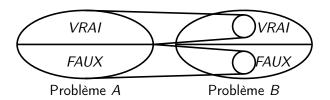


■ On note $A \leq_m B$ lorsque A se réduit à B.

La notion de réduction

Soient A et B deux problèmes d'alphabets respectifs M_A et M_B. Une réduction de A vers B est une fonction f: M_A* → M_B* calculable telle que

$$w \in A \text{ ssi } f(w) \in B.$$



- On note A ≤_m B lorsque A se réduit à B.
 - ▶ intuitivement : $A \le_m B$ signifie que A est plus facile que B.

Théorème

 \leq_m est un préordre (= est reflexive, transitive) :

- 1. $L \leq_m L$;
- 2. $L_1 \leq_m L_2$, $L_2 \leq_m L_3$ impliquent $L_1 \leq_m L_3$.

Théorème

Si $A \le_m B$, et si B est décidable alors A est décidable

Théorème

Si $A \leq_m B$, et si A est indécidable, alors B est indécidable.

Théorème

 \leq_m est un préordre (= est reflexive, transitive) :

- 1. $L \leq_m L$;
- 2. $L_1 \leq_m L_2$, $L_2 \leq_m L_3$ impliquent $L_1 \leq_m L_3$.
- intuitivement : un problème est aussi facile (et difficile) que lui-même, et la relation "être plus facile que" est transitive.

Théorème

Si $A \leq_m B$, et si B est décidable alors A est décidable

Théorème

Si $A \leq_m B$, et si A est indécidable, alors B est indécidable.

Théorème

 \leq_m est un préordre (= est reflexive, transitive) :

- 1. $L \leq_m L$;
- 2. $L_1 \leq_m L_2$, $L_2 \leq_m L_3$ impliquent $L_1 \leq_m L_3$.
- intuitivement : un problème est aussi facile (et difficile) que lui-même, et la relation "être plus facile que" est transitive.

Théorème

Si $A \leq_m B$, et si B est décidable alors A est décidable

intuitivement : si un problème est plus facile qu'un problème décidable, alors il est décidable.

Théorème

Si $A \leq_m B$, et si A est indécidable, alors B est indécidable.

Théorème

 \leq_m est un préordre (= est reflexive, transitive) :

- 1. $L \leq_m L$;
- 2. $L_1 \leq_m L_2$, $L_2 \leq_m L_3$ impliquent $L_1 \leq_m L_3$.
- intuitivement : un problème est aussi facile (et difficile) que lui-même, et la relation "être plus facile que" est transitive.

Théorème

Si $A \leq_m B$, et si B est décidable alors A est décidable

intuitivement : si un problème est plus facile qu'un problème décidable, alors il est décidable.

Théorème

Si $A \le_m B$, et si A est indécidable, alors B est indécidable.

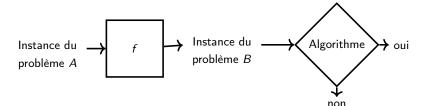
intuitivement : si un problème est plus difficile qu'un problème indécidable, alors il est indécidable.

Preuve du premier théorème :

Considérer la fonction identité pour f pour le premier point. Pour le second point, supposons $L_1 \le_m L_2$ via la réduction f, et $L_2 \le_m L_3$ via la réduction g. On a $x \in L_1$ ssi $g(f(x)) \in L_2$. La composée de deux fonctions calculables est calculable.

■ Preuve du second théorème :

A est décidé par la machine de Turing qui, sur une entrée w, calcule f(w), puis simule la machine de Turing qui décide B sur l'entrée f(w). Puisqu'on a $w \in A$ si et seulement si $f(w) \in B$, la machine de Turing est correcte.



Le troisième théorème est la contraposée du second.

Autres problèmes indécidables

Réductions

Quelques autres problèmes indécidables

Théorème de Rice

 Cette idée permet d'obtenir immédiatement la preuve de l'indécidabilité de plein d'autres problèmes.

Stratégie :

▶ pour prouver que B est indécidable, on prouve que $A \leq_m B$ pour un certain problème A déjà connu comme indécidable.

Exemple 1 : Le problème de l'arrêt des machines de Turing

Il n'est pas possible de déterminer algorithmiquement si une machine de Turing s'arrête.

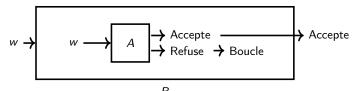
Problème HALTING-PROBLEM:

Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M et une entrée w.

Réponse: Décider si M s'arrête sur l'entrée w.

Proposition Le problème HALTING-PROBLEM est indécidable.

Preuve : $L_{univ} \leq_m HaltingProblem$



- On construit une réduction de L_{univ} vers le problème de l'arrêt : Pour chaque couple (⟨A⟩, w), on considère la machine de Turing B définie de la façon suivante :
 - ▶ B prend en entrée un mot w;
 - ► B simule A sur w;
 - ▶ Si A accepte w, alors B accepte. S A rejette w, alors B boucle (possiblement B simule A pour toujours, si A ne s'arrête pas).
- La fonction f qui envoie $(\langle A \rangle, w)$ sur $(\langle B \rangle, w)$ est calculable.
- De plus, on a (⟨A⟩, w) ∈ L_{univ} si et seulemnet si B s'arrête sur w, c'est-à-dire (⟨A⟩, w) ∈ Halting Problem.

Exemple 2

Il n'est pas possible de déterminer algorithmiquement si une machine de Turing accepte au moins une entrée :

■ Problème *L*_Ø:

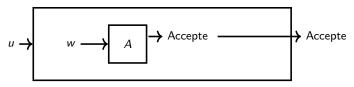
Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M.

Réponse: Décider si $L(M) \neq \emptyset$.

Proposition

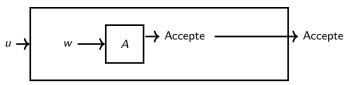
Le problème L_∅ est indécidable.

Démonstration



- On construit une réduction de L_{univ} vers L_{\emptyset} : pour toute paire $(\langle A \rangle, w)$, on considère la machine de Turing A_w définie de la manière suivante :
 - A_w prend en entrée un mot u;
 - $ightharpoonup A_w$ simule A sur w;
 - Si A accepte w, alors A_w accepte.
- La fonction f qui à $(\langle A \rangle, w)$ associe $\langle A_w \rangle$ est bien calculable.
- De plus on a $(\langle A \rangle, w) \in L_{univ}$ si et seulement si $L(A_w) \neq \emptyset$, c'est-à-dire $\langle A_w \rangle \in L_{\emptyset}$:

Démonstration



- A_w
- On construit une réduction de L_{univ} vers L_{\emptyset} : pour toute paire $(\langle A \rangle, w)$, on considère la machine de Turing A_w définie de la manière suivante :
 - \triangleright A_w prend en entrée un mot u;
 - $ightharpoonup A_w$ simule A sur w;
 - ▶ Si A accepte w, alors A_w accepte.
- La fonction f qui à $(\langle A \rangle, w)$ associe $\langle A_w \rangle$ est bien calculable.
- De plus on a $(\langle A \rangle, w) \in L_{univ}$ si et seulement si $L(A_w) \neq \emptyset$, c'est-à-dire $\langle A_w \rangle \in L_{\emptyset}$:
 - en effet, A_w accepte soit tous les mots (et donc le langage correspondant n'est pas vide) si A accepte w, soit n'accepte aucun mot (et donc le langage correspondant est vide) sinon.

Plus précisément

Autres problèmes indécidables

Réductions

Quelques autres problèmes indécidables

Théorème de Rice

■ Beaucoup d'exemples (dont l'exemple 1) peuvent être vus comme les conséquences d'un résultat très général

Théorème (Théorème de Rice)

Toute propriété non triviale des langages acceptés par machines de Turing est indécidable.

Théorème (Théorème de Rice)

Toute propriété non triviale des langages semi-décidables est indécidable.

Théorème (Théorème de Rice)

Toute propriété non triviale des langages semi-décidables est indécidable.

 Autrement dit, soit une propriété P des langages semi-décidables non triviale,

Théorème (Théorème de Rice)

Toute propriété non triviale des langages semi-décidables est indécidable.

 Autrement dit, soit une propriété P des langages semi-décidables non triviale,

■ Alors le problème de décision L_P :

Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M;

Réponse: Décider si L(M) vérifie la propriété P;

est indécidable.

Théorème (Théorème de Rice)

Toute propriété non triviale des langages semi-décidables est indécidable.

- Autrement dit, soit une propriété P des langages semi-décidables non triviale,
 - c'est-à-dire telle qu'il y a au moins une machine de Turing M telle que L(M) satisfait P et une machine de Turing M telle que L(M) ne satisfait pas P.
- Alors le problème de décision L_P :

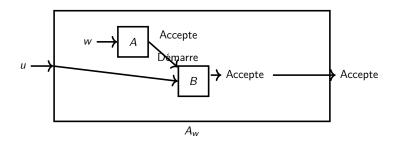
Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M;

Réponse: Décider si L(M) vérifie la propriété P;

est indécidable.

Démonstration graphique

- Il nous faut démontrer que le problème de décision L_P est indécidable.
 - Quitte à remplacer P par sa négation, on peut supposer que le langage vide ne vérifie pas la propriété P.
- Puisque P est non triviale, il existe un moins une machine de Turing B avec L(B) qui vérifie P.



Démonstration :

- ► Il nous faut démontrer que le problème de décision L_P est indécidable.
 - Quitte à remplacer P par sa négation, on peut supposer que le langage vide ne vérifie pas la propriété P (prouver l'indécidabilité de L_p est équivalent à prouver l'indécidabilité de son complémentaire).
- ▶ Puisque P est non triviale, il existe un moins une machine de Turing B avec L(B) qui vérifie P.
- On construit une réduction de L_{univ} vers le langage L_P. Étant donnée une paire (⟨A⟩, w), on considère la machine de Turing A_w définie de la façon suivante :
 - A_w prend en entrée un mot u;
 - Sur le mot u, A_w simule A sur le mot w;
 - Si A accepte w, alors A_w simule B sur le mot u : A_w accepte si seulement si B accepte u.
- Autrement dit, A_w accepte, si et seulement si A accepte w et si B accepte u. Si w est accepté par A, alors $L(A_w)$ vaut L(B), et donc vérifie la propriété P. Si w n'est pas accepté par A, alors $L(A_w) = \emptyset$, et donc ne vérifie pas la propriété P.
- ▶ La fonction f qui à $(\langle A \rangle, w)$ associe $\langle A_w \rangle$ est bien calculable.

Exemple 2 (déjà vu)

Il n'est pas possible de déterminer algorithmiquement si une machine de Turing accepte au moins une entrée :

■ Problème *L*ø:

Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M.

Réponse: Décider si $L(M) \neq \emptyset$.

Proposition

Le problème Lø est indécidable.

Démonstration

C'est une application directe du théorème de Rice.

Exemple 2

Il n'est pas possible de déterminer algorithmiquement si une machine de Turing accepte le mot "informatique"

■ Problème *L*₂:

Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M.

Réponse: Décider si *informatique* $\in L(M)$.

Proposition

Le problème L₂ est indécidable.

Démonstration

C'est une application directe du théorème de Rice.

Exemple 3

Problème *L*≠:

Donnée: Le codage $\langle A \rangle$ d'une machine de Turing A et le codage $\langle A' \rangle$

d'une machine de Turing A'.

Réponse: Déterminer si $L(A) \neq L(A')$.

Proposition

Le problème L≠ est indécidable.

Démonstration : $L_{\emptyset} \leq_m L_{\neq}$

- On construit une réduction de L_{\emptyset} vers L_{\neq} .
 - On considère une machine de Turing fixe B qui accepte le langage vide :
 - prendre par exemple une machine de Turing B qui rentre immédiatement dans une boucle sans fin.
 - ▶ La fonction f qui à $\langle A \rangle$ associe la paire $(\langle A \rangle, \langle B \rangle)$ est bien calculable.
 - ▶ De plus on a $\langle A \rangle \in L_{\emptyset}$ si et seulement si $L(A) \neq \emptyset$ si et seulement si $(\langle A \rangle, \langle B \rangle) \in L_{\neq}$.

Exemple 4

Problème INF412:

Donnée: Le codage $\langle A \rangle$ d'une machine de Turing A.

Réponse: Déterminer si A accepte le mot "INF412" en moins de 412

étapes.

Proposition

Le problème INF412 est ?

Indécidable?

Le problème est décidable : il suffit de simuler la machine pendant 412 étapes.

Au menu

Indécidabilité

Autres problèmes indécidables

Thèse de Church : Encore et encore

Calculabilité

Problèmes indécidables dans d'autres contextes

La suite...

Plus précisément

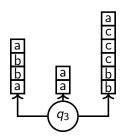
Thèse de Church : Encore et encore

Autres modèles : Bas niveau

Autres modèles : Modèles algébriques

Machines à k piles

- Une machine à k piles, possède un nombre fini k de piles r_1, r_2, \dots, r_k , qui correspondent à des piles d'éléments de Σ .
- Les instructions d'une machine à piles permettent seulement
 - d'empiler un symbole sur l'une des piles,
 - tester la valeur du sommet d'une pile,
 - ou dépiler le symbole au sommet d'une pile.



Théorème

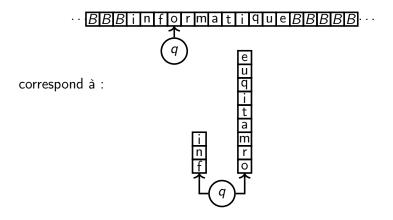
Toute machine de Turing peut être simulée par une machine à 2 piles.

Théorème

Toute machine de Turing peut être simulée par une machine à 2 piles.

(et réciproquement).

Idée de la démonstration : voir une machine de Turing comme une machine à 2-piles.



- Machines à compteurs :
 - une **machine à compteurs** possède un nombre fini k de compteurs r_1, r_2, \dots, r_k , qui contiennent des entiers naturels.
 - Les instructions d'une machine à compteurs permettent seulement
 - de tester l'égalité d'un des compteurs à 0;
 - d'incrémenter un compteur;
 - · ou de décrémenter un compteur.

(tous les compteurs sont initialement nuls, sauf celui codant l'entrée).

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (3,2,0)

- 1. \checkmark IsZero(1,5,2)
- 2. Decr(1,3)
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (3,2,0)

- 1. IsZero(1,5,2)
- 2. \checkmark Decr(1,3)
- 3. Inc(3,4)
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (2,2,0)

- 1. IsZero(1,5,2)
- $2. \qquad \text{Decr}(1,3)$
- 3. \checkmark Inc(3,4)
- 4. Inc(3,1)
- 5. Halt

Instructions:

- Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (2,2,1)

- 1. IsZero(1,5,2)
- $2. \qquad \text{Decr}(1,3)$
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. \checkmark Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (2,2,2)

- 1. \checkmark IsZero(1,5,2)
- 2. Decr(1,3)
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (2,2,2)

- 1. IsZero(1,5,2)
- 2. \checkmark Decr(1,3)
- 3. Inc(3,4)
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (1,2,2)

- 1. IsZero(1,5,2)
- 2. Decr(1,3)
- 3. \checkmark Inc(3,4)
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (1,2,3)

- 1. IsZero(1,5,2)
- $2. \qquad \text{Decr}(1,3)$
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. \checkmark Inc(3,1)
- 5. Halt

Instructions:

- Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (1,2,4)

- 1. \checkmark IsZero(1,5,2)
- 2. Decr(1,3)
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (1,2,4)

- 1. IsZero(1,5,2)
- 2. \checkmark Decr(1,3)
- 3. Inc(3,4)
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (0,2,4)

- 1. IsZero(1,5,2)
- 2. Decr(1,3)
- 3. \checkmark Inc(3,4)
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (0,2,5)

- 1. IsZero(1,5,2)
- $2. \qquad \text{Decr}(1,3)$
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. \checkmark Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (0,2,6)

- 1. \checkmark IsZero(1,5,2)
- 2. Decr(1,3)
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. Inc(3,1)
- 5. Halt

Instructions:

- ► Inc(c,j): incrémente compteur c puis va à l'instruction j.
- Decr(c,j): décrémente compteur c puis va à l'instruction j.
- ► IsZero(c,j,k) teste si le compteur c est nul et va à l'instruction j si c'est le cas, et à l'instruction k sinon.
- Halt arrête le calcul.
 - Exemple d'exécution : compteurs (0,2,6)

- 1. IsZero(1,5,2)
- $2. \qquad \text{Decr}(1,3)$
- $3. \qquad \operatorname{Inc}(3,4)$
- 4. Inc(3,1)
- 5. ✓ Halt

Toute machine à k-piles peut être simulée par une machine à k+1 compteurs.

Principe :

- voir une pile (donc un mot) $w = a_1 a_2 \cdots a_n$ sur l'alphabet $\Sigma = \{0, 1, \dots, r-1\}$ comme l'entier $i = a_n r^{n-1} + a_{n-1} r^{n-2} + \dots + a_2 r + a_1$.
- ▶ Dépiler correspond à remplacer i par i div r. Empiler le symbole a correspond à remplacer i par i * r + a. Lire le sommet d'une pile i correspond à calculer i mod r.
- ▶ Par exemple, pour i div r : en partant avec le compteur supplémentaire (celui d'indice k+1) à 0, on décrémente le compteur i de r et on incrémente le compteur supplémentaire de 1. On répète cette opération jusqu'à ce que le compteur i atteigne 0. On décrémente alors le compteur supplémentaire de 1 en incrémentant le compteur i de 1 jusqu'à ce que le premier soit 0.

Toute machine à $k \ge 3$ compteurs se simule par une machine à 2 compteurs.

Toute machine à $k \ge 3$ compteurs se simule par une machine à 2 compteurs.

Corollaire

Toute machine de Turing se simule par une machine à 2 compteurs.

Toute machine à $k \ge 3$ compteurs se simule par une machine à 2 compteurs.

Corollaire

Toute machine de Turing se simule par une machine à 2 compteurs.

(et réciproquement).

Principe :

- Supposons k = 3. L'idée est coder trois compteurs i, j et k par l'entier m = 2ⁱ3^j5^k. L'un des compteurs stocke cet entier. L'autre compteur est utilisé pour faire des multiplications, divisions, calculs modulo m, pour m valant 2, 3, ou 5, comme dans la preuve précédente.
- ▶ Pour *k* > 3, on utilise le même principe, mais avec les *k* premiers nombres premiers.

Résultats obtenus

- Résumé :
 - Les modèles suivants se simulent deux à deux :
 - Les machines de Turing
 - Les machines à $k \ge 2$ piles
 - Les machines RAM
 - Les machines à $k \ge 2$ compteurs

Thèse de Church

■ Thèse de Church:

Calculable dans un sens intuitif correspond à calculable par machine de Turing

Plus précisément

Thèse de Church : Encore et encore

Autres modèles : Bas niveau

Autres modèles : Modèles algébriques

Fonctions récursives

- Une fonction $f: \mathbb{N}^n \to \mathbb{N}$ est *récursive primitive* si elle est soit la constante 0, soit l'une des fonctions :
 - ightharpoonup Zero: $x \mapsto 0$ la fonction 0;
 - ▶ Succ: $x \mapsto x+1$ la fonction successeur;
 - Projⁱ_n: $(x_1,...,x_n)$ → x_i les fonctions de projection, pour $1 \le i \le n$;
 - ► Comp_m $(g, h_1, ..., h_m)$: $(x_1, ..., x_n) \mapsto$ $g(h_1(x_1, ..., x_n), ..., h_m(x_1, ..., x_n))$ la composition des fonctions récursives primitives $g, h_1, ..., h_m$;
 - ightharpoonup Rec(g,h) la fonction définie par récurrence comme

$$\begin{cases}
f(0, x_2, ..., x_n) = g(x_2, ..., x_n), \\
f(x_1 + 1, x_2, ..., x_n) = h(f(x_1, ..., x_n), x_1, ..., x_n),
\end{cases}$$

où g et h sont récursives primitives.

Fonctions récursives

- Une fonction partielle $f: \mathbb{N}^n \to \mathbb{N}$ est *récursive* si elle est soit la constante 0, soit l'une des fonctions :
 - ightharpoonup Zero: $x \mapsto 0$ la fonction 0;
 - ▶ Succ: $x \mapsto x+1$ la fonction successeur;
 - Projⁱ_n: $(x_1,...,x_n)$ → x_i les fonctions de projection, pour $1 \le i \le n$;
 - ► Comp_m $(g, h_1, ..., h_m)$: $(x_1, ..., x_n) \mapsto$ $g(h_1(x_1, ..., x_n), ..., h_m(x_1, ..., x_n))$ la composition des fonctions récursives $g, h_1, ..., h_m$;
 - ightharpoonup Rec(g,h) la fonction définie par récurrence comme

$$\begin{cases}
f(0, x_2, ..., x_n) = g(x_2, ..., x_n), \\
f(x_1 + 1, x_2, ..., x_n) = h(f(x_1, ..., x_n), x_1, ..., x_n),
\end{cases}$$

où g et h sont récursives

Min(g) la fonction qui à $(x_2,...,x_n)$ associe le plus petit $y \in \mathbb{N}$ tel que $g(y,x_2,...,x_n) = 1$ s'il en existe (et qui n'est pas définie sinon).

Une fonction $f: \mathbb{N}^n \to \mathbb{N}$ est récursive si et seulement si elle est calculable par une machine de Turing.

Une fonction $f: \mathbb{N}^n \to \mathbb{N}$ est récursive si et seulement si elle est calculable par une machine de Turing.

Thèse de Church :

Calculable dans un sens intuitif correspond à calculable par machine de Turing

Au menu

Indécidabilité

Autres problèmes indécidables

Thèse de Church : Encore et encore

Calculabilité

Problèmes indécidables dans d'autres contextes

La suite...

Plus précisément

Calculabilité Un problème qui n'est pas semi-décidable Sur la terminologie utilisée

Décidable = semi-décidable + co-semi-décidable

Théorème

Un langage est décidable si et seulement s'il est semi-décidable et son complémentaire aussi.

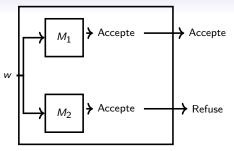
Décidable = semi-décidable + co-semi-décidable

Théorème

Un langage est décidable si et seulement s'il est semi-décidable et son complémentaire aussi.

Ce résultat justifie la terminologie de semi-décidable.

■ Démonstration : Direction ←.



- Supposons que L soit semi-décidable et son complémentaire aussi
 - Il existe une machine de Turing M₁ qui termine en acceptant sur L.
 - et une machine de Turing M₂ qui termine en acceptant sur son complémentaire.
- On construit une machine de Turing M qui, sur une entrée w, simule t étapes de M_1 et t étapes M_2 sur w, pour t = 1, 2, ... jusqu'à ce que l'une des deux termine :
 - si M_1 termine, la machine de Turing M accepte;
 - si c'est M_2 , la machine M refuse.

- Démonstration : Direction ⇒.
 - Par définition, un langage décidable est semi-décidable.
 - ► En inversant dans la machine de Turing l'état d'acceptation et de refus, son complémentaire est aussi décidable, et donc aussi semi-décidable.

Un problème non récursivement énumérable

On considère alors le complémentaire du problème L_{univ} , que l'on va noter $\overline{L_{univ}}$:

```
Problème \overline{L_{univ}}:
```

Donnée: Le codage $\langle M \rangle$ d'une machine de Turing M et un mot w.

Réponse: Décider si la machine M n'accepte pas le mot w.

Corollaire

Le problème Luniv n'est pas semi-décidable.

Preuve :

Sinon, par le théorème précédent, le problème de décision Luniv serait décidable.

Plus précisément

Calculabilité

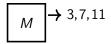
Un problème qui n'est pas semi-décidable Sur la terminologie utilisée

Théorème

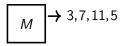
Théorème

Théorème

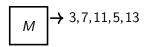
Théorème



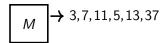
Théorème



Théorème



Théorème

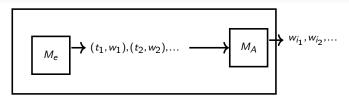


Théorème

Un langage $L \subset M^*$ est récursivement énumérable (= semi-décidable) si et seulement si l'on peut produire une machine de Turing qui affiche un à un (énumère) tous les mots du langage L.

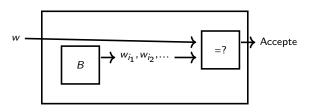
$$\longrightarrow$$
 3,7,11,5,13,37,41...

 Ce résultat justifie la terminologie de récursivement énumérable comme synonyme de semi-décidable. ■ Démonstration : Direction ⇒.



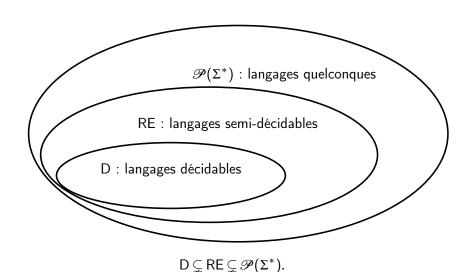
- Supposons L récursivement énumérable : soit A la machine qui accepte les mots de L.
- ▶ $\mathbb{N} \times \Sigma^*$ est effectivement dénombrable : on peut construire une machine de Turing M_e qui produit le codage (t, w) de tous les couples (t, w) où t est un entier, w est un mot.
- Considérons une machine de Turing qui en plus, pour chaque couple produit (t, w), simule t étapes de la machine A. Si la machine A termine et accepte en exactement t étapes, la machine affiche alors le mot w. Sinon elle n'affiche rien pour ce couple.

■ Démonstration : Direction ←.



- ▶ si l'on a une machine de Turing B qui énumère tous les mots du langage L, alors on peut construire une machine de Turing qui étant donné un mot w, simule B, et à chaque fois que B produit un mot compare ce mot au mot w.
 - S'ils sont égaux, alors la machine s'arrête et accepte.
 - Sinon, la machine continue à jamais.

Le paysage de la calculabilité



 $L_{univ} \in RE \setminus D$.

Au menu

Indécidabilité

Autres problèmes indécidables

Thèse de Church : Encore et encore

Calculabilité

Problèmes indécidables dans d'autres contextes

La suite...

Plus précisément

Problèmes indécidables dans d'autres contextes Le drame de la vérification D'autres problèmes indécidables

Constat dramatique

- L'objet de la vérification :
 - ightharpoonup on se donne la description d'un système ${\mathscr S}$
 - ightharpoonup on se donne la description d'une propriété ϕ
 - on souhaite déterminer si $\mathcal{S} \models \phi$, c'est-à-dire si le système vérifie sa spécification.

Constat dramatique

- L'objet de la vérification :
 - ightharpoonup on se donne la description d'un système ${\mathscr S}$
 - ightharpoonup on se donne la description d'une propriété ϕ
 - on souhaite déterminer si $\mathcal{S} \models \phi$, c'est-à-dire si le système vérifie sa spécification.
- Le problème est indécidable
 - dès que S permet de modéliser des systèmes aussi simples que des systèmes à ≥ 2 compteurs;
 - et que φ n'est pas une propriété toujours vraie ou toujours fausse.

Retour sur le transparent 12 du premier cours

Quelques histoires récentes :

370 millions de dollars :

≥ 475 millions de dollars :

 $\frac{4195835}{3145727} =$

1.333739068902037589

- Garantir informatiquement qu'un système donné vérifie sa spécification n'est pas possible dans le cas général.
- On doit concevoir des méthodes qui évitent les difficultés.
- Ou qui peuvent être incomplètes...

Plus précisément

Problèmes indécidables dans d'autres contextes Le drame de la vérification D'autres problèmes indécidables

D'autres problèmes indécidables

Indécidables :

Dixième problème de Hilbert :

Donnée: Un polynôme $P \in \mathbb{Z}[X_1, \dots, X_n]$ à coefficients entiers.

Réponse: Décider s'il possède une racine entière.

► Simplification en calcul formel :

Donnée: Une expression mathématique d'une variable x construite par

composition à partir de la constante 1, l'addition, la

soustraction, la multiplication, le sinus et la valeur absolue

Réponse: Décider si cette expression est la fonction constante nulle.

En logique :

Donnée: Une formule arithmétique F du premier ordre.

Réponse: Décider si F est vraie sur les entiers (c-à-d $F \in Th(\mathbb{N})$).

D'autres problèmes indécidables

Indécidables :

Dixième problème de Hilbert :

Donnée: Un polynôme $P \in \mathbb{Z}[X_1, \dots, X_n]$ à coefficients entiers.

Réponse: Décider s'il possède une racine entière.

► Simplification en calcul formel :

Donnée: Une expression mathématique d'une variable x construite par

composition à partir de la constante 1, l'addition, la

soustraction, la multiplication, le sinus et la valeur absolue Réponse: Décider si cette expression est la fonction constante nulle.

► En logique :

Donnée: Une formule arithmétique F du premier ordre.

Réponse: Décider si F est vraie sur les entiers (c-à-d $F \in Th(\mathbb{N})$).

Remarque:

► Théorème de Presburger : La théorie du premier ordre des entiers munis de l'addition seulement (mais pas de la multiplication) est décidable.

D'autres problèmes indécidables

Indécidables :

Dixième problème de Hilbert :

Donnée: Un polynôme $P \in \mathbb{Z}[X_1, \dots, X_n]$ à coefficients entiers.

Réponse: Décider s'il possède une racine entière.

► Simplification en calcul formel :

Donnée: Une expression mathématique d'une variable x construite par

composition à partir de la constante 1, l'addition, la

soustraction, la multiplication, le sinus et la valeur absolue

Réponse: Décider si cette expression est la fonction constante nulle.

En logique :

Donnée: Une formule arithmétique F du premier ordre.

Réponse: Décider si F est vraie sur les entiers (c-à-d $F \in Th(\mathbb{N})$).

Remarque :

- Théorème de Presburger : La théorie du premier ordre des entiers munis de l'addition seulement (mais pas de la multiplication) est décidable.
- Autre remarque : Si on remplace sin par exp, dans l'énoncé, alors cela reste décidable.

Au menu

Indécidabilité

Autres problèmes indécidables

Thèse de Church : Encore et encore

Calculabilité

Problèmes indécidables dans d'autres contextes

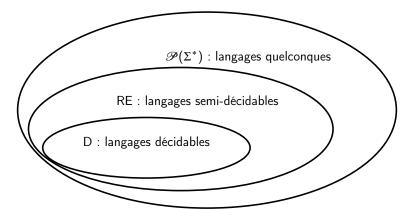
La suite...

On souhaite parler d'une ressource/mesure élémentaire particulière : le temps de calcul.

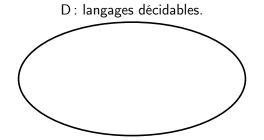
On souhaite parler d'une ressource/mesure élémentaire particulière : le temps de calcul.

Objectif:

distinguer ce qui est raisonnable de ce qui n'est pas raisonnable en termes de temps de calcul.



- On souhaite parler d'une ressource/mesure élémentaire particulière : le temps de calcul.
- Objectif:
 - distinguer ce qui est raisonnable de ce qui n'est pas raisonnable en termes de temps de calcul.



- On souhaite parler d'une ressource/mesure élémentaire particulière : le temps de calcul.
- Objectif:
 - distinguer ce qui est raisonnable de ce qui n'est pas raisonnable en termes de temps de calcul.

