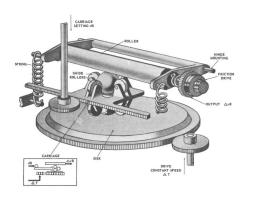
Cours 3: Complétude de la logique du premier ordre.



Olivier Bournez bournez@lix.polytechnique.fr Ecole Polytechnique CSC INF41012 EP

On a introduit le calcul des prédicats :

Syntaxe :

Sémantique :

- On a introduit le calcul des prédicats :
 - Syntaxe :
 - Etant fixée une signature Σ = (%, F, R), où %, F, R sont respectivement des symboles de constantes, fonctions et relations.

Sémantique :

- On a introduit le calcul des prédicats :
 - Syntaxe :
 - Etant fixée une signature Σ = (%, F, R), où %, F, R sont respectivement des symboles de constantes, fonctions et relations.
 - On définit la notion de terme, terme clos, formule atomique, formule, formule close sur cette signature.
 - Sémantique :

- On a introduit le calcul des prédicats :
 - Syntaxe :
 - Etant fixée une signature Σ = (%, F, R), où %, F, R sont respectivement des symboles de constantes, fonctions et relations.
 - On définit la notion de terme, terme clos, formule atomique, formule, formule close sur cette signature.
 - Sémantique :
 - Etant donnée une structure (réalisation) M de signature Σ de domaine M,

- On a introduit le calcul des prédicats :
 - Syntaxe :
 - Etant fixée une signature Σ = (%, F, R), où %, F, R sont respectivement des symboles de constantes, fonctions et relations.
 - On définit la notion de terme, terme clos, formule atomique, formule, formule close sur cette signature.
 - Sémantique :
 - Etant donnée une **structure** (réalisation) $\mathfrak M$ de signature Σ de domaine M.
 - et pour une valuation v, on définit l'interprétation d'un terme, d'une formule atomique et d'une formule pour cette valuation.

Exemples de signatures

- $\Sigma = (\{0,1\},\{s,+\},\{Impair,Premier,=,<\})$ avec les symboles de constante 0 et 1, les symboles de fonctions s d'arité 1 et + d'arité 2, les symboles de relations Impairs et Premier d'arité 1 et = et < d'arité 2.
- $\mathcal{L}_2 = (\{c,d\},\{f,g,h\},\{R\}))$ avec c,d deux symboles de constante, f un symbole de fonction d'arité 1, g et h deux symboles de fonctions d'arité 2, R un symbole de relation d'arité 2.

Exemples de termes

(Convention : x, y, z, ... désignent des variables, c-à-d des éléments de \mathcal{V}).

- +(x,s(+(1,1))) est un terme sur la signature Σ précédente qui n'est pas clos. +(+(s(1),+(1,1)),s(s(0))) est un terme clos sur cette même signature.
- h(c,x), h(y,z), g(d,h(y,z)) et f(g(d,h(y,z))) sont des termes sur la signature \mathcal{L}_2 .

4

Exemples de formules

- $\forall x ((Premier(x) \land > (x, +(1,1)) \Rightarrow Impair(x))$ est une formule sur la signature Σ précédente.
- $\exists x (= (s(x), +(1,0)) \lor \forall y > (+(x,y), s(x))))$ aussi.
- **Exemples** de formules sur la signature \mathscr{L}_2 :

 - $\forall x \exists y (g(x,y) = c \land g(y,x) = c)$
 - $\forall x \neg f(x) = c$
 - $\forall x \exists y \neg f(x) = c$

Exemples de formules

- $\forall x((Premier(x) \land x > 1 + 1) \Rightarrow Impair(x))$ est une formule sur la signature Σ précédente.
- $\exists x (= (s(x), +(1,0)) \lor \forall y > (+(x,y), s(x))))$ aussi.
- **Exemples** de formules sur la signature \mathscr{L}_2 :

 - $\forall x \exists y (g(x,y) = c \land g(y,x) = c)$
 - $\forall x \neg f(x) = c$
 - $\forall x \exists y \neg f(x) = c$

Exemples de formules

- $\forall x ((Premier(x) \land x > 1 + 1) \Rightarrow Impair(x))$ est une formule sur la signature Σ précédente.
- $\exists x(s(x) = 1 + 0 \lor \forall y \ x + y > s(x)) \text{ aussi.}$
- **Exemples** de formules sur la signature \mathscr{L}_2 :

 - $\forall x \exists y (g(x,y) = c \land g(y,x) = c)$
 - $\forall x \neg f(x) = c$
 - $\forall x \exists y \neg f(x) = c$

Formules closes/non-closes

- Les variables libres d'un terme sont les variables qui apparaissent dans ce terme.
- L'ensemble $\ell(t)$ des variables libres d'une formule F se définit inductivement par :
 - (B) $\ell(R(t_1,\dots,t_n)) = \ell(t_1) \cup \dots \cup \ell(t_n);$
 - (1) $\ell(\neg G) = \ell(G)$;
 - (1) $\ell(G \vee H) = l(G \wedge H) = \ell(G \Rightarrow H) = \ell(G \Leftrightarrow H) = \ell(G) \cup \ell(H)$;
 - (1) $\ell(\forall xF) = \ell(\exists xF) = \ell(F) \setminus \{x\}.$
- Une formule F est dite close si elle ne possède pas de variables libres.
- Exemple :
 - ► La formule $\forall x \forall z (R(x,z) \Rightarrow \exists y (R(y,z) \lor y = z))$ est close.

Exemples de modèles sur ces signatures

- On peut obtenir une réalisation de la signature Σ précédente en prenant comme ensemble de base les entiers, 0 interprété par l'entier 0, 1 par l'entier 1, s par la fonction qui à l'entier x associe x+1, + par la fonction addition, Impair par les entiers impairs, Premier par les entiers premiers, = par l'égalité, et < par la relation $\{(x,y)|x< y\}$.
 - ▶ On peut la noter (\mathbb{N} ,=,<, *Impair*, *Premier*, s,+,0,1).
- On peut obtenir une réalisation de la signature \mathcal{L}_2 en considérant l'ensemble de base \mathbb{R} des réels, en interprétant R comme la relation d'ordre \leq sur les réels, la fonction f comme la fonction qui à x associe x+1, les fonctions g et h comme l'addition et la multiplication, les constantes c et d comme 0 et 1.
 - ▶ On peut la noter (\mathbb{R} , \leq , s, +, \times , 0, 1).

Termes :

- Soit \mathcal{N} la structure $(\mathbb{N}, \leq, s, +, \times, 0, 1)$ de signature $\mathcal{L}_2 = (\{c, d\}, \{f, g, h\}, \{R\}).$
 - l'interprétation du terme h(d,x) pour une valuation telle que v(x) = 2 est 2.
 - l'interprétation du terme f(g(d,h(y,z))) pour une valuation telle que v(y) = 2, v(z) = 3 est 8.

Formules :

- Sur cette même structure :
 - $\forall x \forall y \forall z ((R(x,y) \land R(y,z) \Rightarrow R(x,z))$ s'interprête en vrai.
 - $\forall x \exists y (g(x,y) = c \land g(y,x) = c)$ s'interprête en faux.
 - $\forall x \neg f(x) = c$ s'interprête en vrai.
 - $\forall x \exists y \neg f(x) = c$ s'interprête en vrai.
- ► Sur la structure (\mathbb{R} , \leq , s, +, \times , 0, 1) de même signature?

- Pour une formule close F, la satisfaction de F dans la structure $\mathfrak M$ ne dépend pas de la valuation v.
- On dit alors que \mathfrak{M} est un modèle de F, lorsque F est satisfaite sur \mathfrak{M} .
 - ▶ On le note $\mathfrak{M} \models F$.

Théories

- Une théorie T est un ensemble de formules closes sur une signature donnée. Les formules d'une théorie sont appelées des axiomes de cette théorie.
- Une structure \mathfrak{M} est un modèle de la théorie \mathcal{T} si \mathfrak{M} est un modèle de chacune des formules de la théorie.
- Une théorie est dite consistante si elle possède un modèle.
- On va supposer dans ces transparents que l'on ne considère que des signatures dénombrables.

Au menu

Quelques exemples de théories du premier ordre

Equivalences et formes normales

Systèmes de déduction pour le calcul des prédicats

Complétude du calcul des prédicats

Quelques applications

Le prochain épisode

Plus précisément

Quelques exemples de théories du premier ordre Graphe

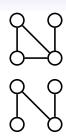
Groupes

Graphe

- Un graphe orienté peut se voir comme un modèle de la théorie sans axiome sur la signature $(\emptyset, \emptyset, \{R\})$.
- Un graphe non-orienté peut se voir comme un modèle de la théorie sur la même signature avec l'unique axiome

$$\forall x \forall y \ (R(x,y) \Leftrightarrow R(y,x)). \tag{1}$$

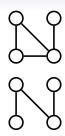
11



Pour la signature $(\emptyset, \emptyset, \{=, R\})$, la formule

$$\exists x \forall y (\neg (x = y) \Rightarrow R(x, y))$$

est satisfaite sur le premier et pas sur le second.



Pour la signature $(\emptyset, \emptyset, \{=, R\})$, la formule

$$\exists x \forall y (\neg(x = y) \Rightarrow R(x, y))$$

est satisfaite sur le premier et pas sur le second.

(Remarque : Sur cette signature comme sur la signature $\Sigma = (\emptyset, \emptyset, \{R\})$, il n'y a aucun terme).

■ On considère la signature $({a,b,c},\emptyset,{R})$

- On considère la signature $({a, b, c}, \emptyset, {R})$

est un modèle de $R(a,b) \wedge R(b,c) \wedge R(a,c)$.

- On considère la signature $({a, b, c}, \emptyset, {R})$

est un modèle de $R(a,b) \wedge R(b,c) \wedge R(a,c)$.

Attention :

aussi.

Plus précisément

Quelques exemples de théories du premier ordre

Graphe

Groupes

Corps

Groupe

Un groupe est un modèle égalitaire ¹ de la théorie constituée des deux formules :

$$\forall x \forall y \forall z \ x * (y * z) = (x * y) * z \tag{2}$$

$$\exists e \forall x \ (x * e = e * x = x \land \exists y (x * y = y * x = e))$$
 (3)

sur la signature $\Sigma = (\emptyset, \{*\}, \{=\})$, où * et = sont d'arité 2.

^{1.} On impose à l'interprétation de = de correspondre à l'égalité.

Plus précisément

Quelques exemples de théories du premier ordre

Graphe

Groupe

Corps

Corps

 Un corps commutatif est un modèle égalitaire de la théorie constituée des formules

$$\forall x \forall y \forall z \ (x + (y + z) = (x + y) + z) \tag{4}$$

$$\forall x \forall y (x + y = y + x) \tag{5}$$

$$\forall x(x+0=x) \tag{6}$$

$$\forall x \exists y (x + y = 0) \tag{7}$$

$$\forall x \forall y \forall z \ x * (y + z) = x * y + x * z \tag{8}$$

$$\forall x \forall y \forall z \ ((x * y) * z) = (x * (y * z)) \tag{9}$$

$$\forall x \forall y \ (x * y = y * x) \tag{10}$$

$$\forall x \ (x * 1 = x) \tag{11}$$

$$\forall x \exists y (x = 0 \lor x * y = 1) \tag{12}$$

$$\neg 1 = 0 \tag{13}$$

sur une signature avec deux symboles de constantes 0 et 1, deux symboles de fonctions + et * d'arité 2, et le symbole de relation = d'arité 2.

- Corps de caractéristique *p* :
 - On ajoute à la théorie précédente la formule F_p définie par 1+···+1=0, où 1 est répété p fois.
- Corps de caractéristique 0 :
 - ▶ On ajoute à la théorie précédente l'union des formules $\neg F_2, \dots, \neg F_p$ pour p un nombre premier.
- Corps algébriquement clos :
 - Pour chaque entier n > 0, on considère la formule G_n $\forall x_0 \forall x_1 \cdots \forall x_{n-1} \exists x (x_0 + x_1 * x + x_2 * x^2 + \cdots + x_{n-1} * x^{n-1} + x^n) = 0$ où x^k est $x * \cdots * x$ avec x répété k fois.
 - on ajoute à la théorie précédente l'union des formules G_n pour n > 0.

Exercice : corps réel clos

- Un corps réel clos est un corps totalement ordonné F tel que tout élément positif soit un carré et que tout polynôme de degré impair à coefficients dans F ait au moins une racine dans F.
 - R est un corps réel clos.
- Cela correspond à une théorie du calcul des prédicats.

voir sujet PC de demain.

Au menu

Quelques exemples de théories du premier ordre

Equivalences et formes normales

Systèmes de déduction pour le calcul des prédicats

Complétude du calcul des prédicats

Quelques applications

Le prochain épisode

- Deux formules F et G sont équivalentes si pour toute structure, et pour toute valuation v les formules F et G prennent la même valeur de vérité.
 - ▶ On note $F \equiv G$ dans ce cas.

Proposition

Si F une formule alors :

$$\neg \forall x F \equiv \exists x \neg F$$
$$\neg \exists x F \equiv \forall x \neg F$$
$$\forall x \forall y F \equiv \forall y \forall x F$$
$$\exists x \exists y F \equiv \exists y \exists x F$$

Proposition

Si F et G sont des formules et la variable x n'est pas libre dans G alors : $\forall xG \equiv \exists xG \equiv G$

$$\forall xG \equiv \exists xG \equiv G$$

$$(\forall xF \lor G) \equiv \forall x(F \lor G)$$

$$(\forall xF \land G) \equiv \forall x(F \land G)$$

$$(\exists xF \lor G) \equiv \exists x(F \lor G)$$

$$(\exists xF \land G) \equiv \exists x(F \land G)$$

$$(G \land \forall xF) \equiv \forall x(G \land F)$$

$$(G \lor \forall xF) \equiv \forall x(G \lor F)$$

$$(G \lor \exists xF) \equiv \exists x(G \lor F)$$

$$(G \lor \exists xF) \equiv \exists x(G \lor F)$$

$$(\forall xF \Rightarrow G) \equiv \exists x(F \Rightarrow G)$$

$$(\exists xF \Rightarrow G) \equiv \forall x(F \Rightarrow G)$$

$$(G \Rightarrow \forall xF) \equiv \forall x(G \Rightarrow F)$$

$$(G \Rightarrow \exists xF) \equiv \exists x(G \Rightarrow F)$$

Conséquences : formes normales

Théorème

Toute formule F est équivalente à une formule prénexe G.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale conjonctive.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale disjonctive.

Conséquences : formes normales

Théorème

Toute formule F est équivalente à une formule prénexe G.

■ i.e. de la forme $Q_1x_1Q_2x_2\cdots Q_nx_nF'$ où chacun des Q_i est soit un quantificateur \forall , soit un quantificateur \exists , et F' est une formule qui ne contient aucun quantificateur.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale conjonctive.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale disjonctive.

Conséquences : formes normales

Théorème

Toute formule F est équivalente à une formule prénexe G.

■ i.e. de la forme $Q_1x_1Q_2x_2\cdots Q_nx_nF'$ où chacun des Q_i est soit un quantificateur \forall , soit un quantificateur \exists , et F' est une formule qui ne contient aucun quantificateur.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale conjonctive.

• i.e. F' est une conjonction de disjonctions de formules atomiques ou leurs négations.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale disjonctive.

Conséquences : formes normales

Théorème

Toute formule F est équivalente à une formule prénexe G.

■ i.e. de la forme $Q_1x_1Q_2x_2\cdots Q_nx_nF'$ où chacun des Q_i est soit un quantificateur \forall , soit un quantificateur \exists , et F' est une formule qui ne contient aucun quantificateur.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale conjonctive.

• i.e. F' est une conjonction de disjonctions de formules atomiques ou leurs négations.

Théorème

Toute formule F est équivalente à une formule prénexe où G est en forme normale disjonctive.

• i.e. F' est une disjonction de conjonctions de formules atomiques ou leurs négations.

Au menu

Quelques exemples de théories du premier ordre

Equivalences et formes normales

Systèmes de déduction pour le calcul des prédicats

Complétude du calcul des prédicats

Quelques applications

Le prochain épisode

Un système de déduction

- Il nous faut définir une notion de démonstration
 - ightharpoonup c'est-à-dire $\mathcal{T} \vdash F$.
- Les systèmes de déduction (Hilbert-Fregge, déduction naturelle, résolution, tableaux) du calcul propositionnel se généralisent au calcul des prédicats.

Plus précisément

Systèmes de déduction pour le calcul des prédicats Preuves à la Hilbert-Fregge

Règle de généralisation

- Par rapport au calcul propositionnel, on n'utilise plus seulement la règle de modus ponens, mais aussi une règle de généralisation :
 - si F est une formule et x une variable, la règle de généralisation déduit ∀xF de F.

$$\frac{F}{\forall x F}$$

■ Règle troublante?

Règle de généralisation

- Par rapport au calcul propositionnel, on n'utilise plus seulement la règle de modus ponens, mais aussi une règle de généralisation :
 - si F est une formule et x une variable, la règle de généralisation déduit ∀xF de F.

$$\frac{F}{\forall x F}$$

- Règle troublante?
 - non, c'est ce que l'on fait dans le raisonnement courant régulièrement :
 - si on arrive à prouver F(x) sans hypothèse particulière sur x, alors on saura que ∀xF(x).

Axiomes logiques

- Les axiomes logiques du calcul des prédicats sont :
 - 1. toutes les instances des tautologies du calcul propositionnel;
 - 2. les axiomes des quantificateurs, c'est-à-dire
 - 2.1 les formules de la forme $(\exists x F \Leftrightarrow \neg \forall x \neg F)$, où F est une formule quelconque et x une variable quelconque;
 - 2.2 les formules de la forme $(\forall x(F \Rightarrow G) \Rightarrow (F \Rightarrow \forall xG))$ où F et G sont des formules quelconques et x une variable qui n'a pas d'occurrence libre dans F;
 - 2.3 les formules de la forme $(\forall xF \Rightarrow F(t/x))$ où F est une formule, t un terme et aucune occurrence libre de x dans F ne se trouve dans le champ d'un quantificateur liant une variable de t, où F(t/x) désigne la substitution de x par t.

Preuve par modus ponens et généralisation

- Soit T une théorie et F une formule.
- Une **preuve de** F à **partir de** \mathcal{T} est une suite finie F_1, F_2, \dots, F_n de formules telle que
 - $ightharpoonup F_n$ est égale à F,
 - et pour tout i,
 - ou bien F_i est dans \mathcal{T} ,
 - ou bien F_i est un axiome logique,
 - ou bien F_i s'obtient par modus ponens à partir de deux formules F_i, F_k avec j < i et k < i,
 - ou bien F_i s'obtient à partir d'un formule F_j avec j < i par généralisation.
- Et on note $\mathcal{T} \vdash F$ dans ce cas.

Exemple

Voici une preuve de $\forall v_0 \forall v_1 F \Rightarrow \forall v_1 \forall v_0 F$ (à partir de $\mathcal{T} = \emptyset$).

■
$$F_1: \forall v_0 \forall v_1 F \Rightarrow \forall v_1 F$$
 (axiome des quantificateurs 2.3);

•
$$F_2: \forall v_1 F \Rightarrow F$$
 (axiome des quantificateur 2.3);

■
$$F_3: (\forall v_0 \forall v_1 F \Rightarrow \forall v_1 F) \Rightarrow ((\forall v_1 F \Rightarrow F) \Rightarrow (\forall v_0 \forall v_1 F \Rightarrow F))$$
 (instance d'une tautologie);

$$F_4: ((\forall v_1 F \Rightarrow F) \Rightarrow (\forall v_0 \forall v_1 F \Rightarrow F))$$

(modus ponens à partir de
$$F_1$$
 et F_3);

$$F_5: (\forall v_0 \forall v_1 F \Rightarrow F)$$

(modus ponens à partir de
$$F_2$$
 et $F3$);

$$F_6: \forall v_0(\forall v_0 \forall v_1 F \Rightarrow F)$$

$$F_7: \forall \, v_0 \big(\forall \, v_0 \, \forall \, v_1 \, F \Rightarrow F \big) \Rightarrow \big(\forall \, v_0 \, \forall \, v_1 \, F \Rightarrow \forall \, v_0 \, F \big)$$

(axiome des quantificateurs
$$2.2$$
);

$$F_8: (\forall v_0 \forall v_1 F \Rightarrow \forall v_0 F)$$

(modus ponens à partir de
$$F6$$
 et $F7$);

$$F_9: \forall v_1(\forall v_0 \forall v_1 F \Rightarrow \forall v_0 F)$$

$$F_{10}: (\forall v_1(\forall v_0 \forall v_1 F \Rightarrow \forall v_0 F)) \Rightarrow (\forall v_0 \forall v_1 F \Rightarrow \forall v_1 \forall v_0 F)$$

$$F_{11}: (\forall v_0 \forall v_1 F \Rightarrow \forall v_1 \forall v_0 F)$$

(modus ponens à partir de
$$F_9$$
 et F_{10});

Théorème de complétude

- Ce système de déduction est valide et complet.
 - ▶ Rappel : $\mathcal{T} \vdash F$ pour "F se prouve à partir de \mathcal{T} " dans ce système.
 - Notons : $\mathcal{T} \models F$ pour "tout modèle de \mathcal{T} est un modèle de F."
- C'est-à-dire :

Théorème (Validité)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \vdash F$ alors $\mathcal{T} \models F$.

Théorème (Complétude)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \models F$ alors $\mathcal{T} \vdash F$.

Plus précisément

Systèmes de déduction pour le calcul des prédicats

Preuves à la Hilbert-Fregge

Bonus Track : Preuves en déduction naturelle

■ La notion de démonstration précédente est pénible à utiliser en pratique.

- La notion de démonstration précédente est pénible à utiliser en pratique.
- Une alternative : la **déduction naturelle**.

- La notion de démonstration précédente est pénible à utiliser en pratique.
- Une alternative : la déduction naturelle.
- Principe :
 - On manipule des couples (appelés séquents) Γ ⊢ A, où Γ est un ensemble fini de formules (propositionnelles) et A est une formule (propositionnelle).

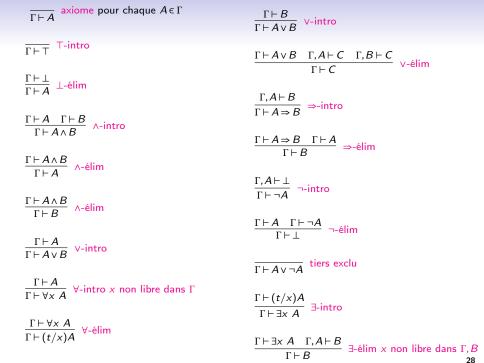
On utilise les règles de déduction du transparent suivant

- La notion de démonstration précédente est pénible à utiliser en pratique.
- Une alternative : la déduction naturelle.
- Principe :
 - On manipule des couples (appelés séquents) Γ ⊢ A, où Γ est un ensemble fini de formules (propositionnelles) et A est une formule (propositionnelle).
 - Motivation sous-jacente : Γ ⊢ A exprime le fait que sous les hypothèses Γ, on a A.
 - On utilise les règles de déduction du transparent suivant

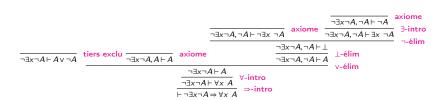
- La notion de démonstration précédente est pénible à utiliser en pratique.
- Une alternative : la déduction naturelle.
- Principe :
 - On manipule des couples (appelés séquents) Γ ⊢ A, où Γ est un ensemble fini de formules (propositionnelles) et A est une formule (propositionnelle).
 - Motivation sous-jacente : Γ ⊢ A exprime le fait que sous les hypothèses Γ, on a A.
 - On utilise les règles de déduction du transparent suivant
 - i.e. : on définit inductivement l'ensemble des séquents dérivables par les règles du transparent suivant.

- La notion de démonstration précédente est pénible à utiliser en pratique.
- Une alternative : la déduction naturelle.
- Principe :
 - On manipule des couples (appelés séquents) Γ ⊢ A, où Γ est un ensemble fini de formules (propositionnelles) et A est une formule (propositionnelle).
 - Motivation sous-jacente : Γ ⊢ A exprime le fait que sous les hypothèses Γ, on a A.
 - On utilise les règles de déduction du transparent suivant
 - i.e. : on définit inductivement l'ensemble des séquents dérivables par les règles du transparent suivant.
 - Ici, on considère que les formules incluent aussi ⊥, interprété par faux, et ⊤ interprété par vrai.

- La notion de démonstration précédente est pénible à utiliser en pratique.
- Une alternative : la déduction naturelle.
- Principe :
 - On manipule des couples (appelés séquents) Γ ⊢ A, où Γ est un ensemble fini de formules (propositionnelles) et A est une formule (propositionnelle).
 - Motivation sous-jacente : Γ ⊢ A exprime le fait que sous les hypothèses Γ, on a A.
 - On utilise les règles de déduction du transparent suivant
 - i.e. : on définit inductivement l'ensemble des séquents dérivables par les règles du transparent suivant.
 - Ici, on considère que les formules incluent aussi ⊥, interprété par faux, et ⊤ interprété par vrai.
- On dit que F est prouvable à partir de T, noté T⊢F si T⊢F est un séquent dérivable. F est dite prouvable si elle est prouvable à partir de T = Ø.



Exemple



Théorème de complétude

- Ce système de déduction est valide et complet.
 - ▶ Rappel : $\mathcal{T} \vdash F$ pour "F se prouve à partir de \mathcal{T} " dans ce système.
 - Notons : $\mathcal{T} \models F$ pour "tout modèle de \mathcal{T} est un modèle de F."
- C'est-à-dire :

Théorème (Validité)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \vdash F$ alors $\mathcal{T} \models F$.

Théorème (Complétude)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \models F$ alors $\mathcal{T} \vdash F$.

Au menu

Quelques exemples de théories du premier ordre

Equivalences et formes normales

Systèmes de déduction pour le calcul des prédicats

Complétude du calcul des prédicats

Quelques applications

Le prochain épisode

Plus précisément

Complétude du calcul des prédicats Théorème de complétude Théorème de compacité

Enoncé

- On peut construire un (des) système(s) de preuve valide(s) et complet(s) :
 - Notons : $\mathcal{T} \vdash F$ pour "F se prouve à partir de \mathcal{T} " dans ce système.
 - Notons : $\mathcal{T} \models F$ pour "tout modèle de \mathcal{T} est un modèle de F."
- C'est-à-dire :

Théorème (Validité)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \vdash F$ alors $\mathcal{T} \models F$.

Théorème (Complétude)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \models F$ alors $\mathcal{T} \vdash F$.

Une théorie 𝒯 est dite cohérente s'il n'existe pas de formule F telle que 𝒯 ⊢ F et 𝒯 ⊢ ¬F.

- Une théorie 𝒯 est dite cohérente s'il n'existe pas de formule F telle que 𝒯 ⊢ F et 𝒯 ⊢ ¬F.
- Si \mathcal{T} n'est pas cohérente, alors \mathcal{T} prouve toute formule.

- Une théorie 𝒯 est dite cohérente s'il n'existe pas de formule F telle que 𝒯 ⊢ F et 𝒯 ⊢ ¬F.
- \blacksquare Si $\mathcal T$ n'est pas cohérente, alors $\mathcal T$ prouve toute formule.

Autrement dit : s'il y a une formule F telle que $\mathcal{T} \vdash F$ et $\mathcal{T} \vdash \neg F$ alors pour toute formule G, on a $\mathcal{T} \vdash G$ et $\mathcal{T} \vdash \neg G$

- Une théorie 𝒯 est dite cohérente s'il n'existe pas de formule F telle que 𝒯 ⊢ F et 𝒯 ⊢ ¬F.
- \blacksquare Si ${\mathcal T}$ n'est pas cohérente, alors ${\mathcal T}$ prouve toute formule.

Autrement dit : s'il y a une formule F telle que $\mathcal{T} \vdash F$ et $\mathcal{T} \vdash \neg F$ alors pour toute formule G, on a $\mathcal{T} \vdash G$ et $\mathcal{T} \vdash \neg G$

▶ (pour les preuves à la Hilbert, concaténer une preuve de F, une preuve de $\neg F$, ajouter la tautologie ($F \Rightarrow (\neg F \Rightarrow G)$) et un modus ponens).

Autres formulations équivalentes du théorème de complétude

- 3 formulations équivalentes du théorème de Complétude.
 - 1. Pour toute formule F, $\mathcal{T} \models F$ implique $\mathcal{T} \vdash F$.
 - 2. Pour toute formule F, F n'est pas prouvable à partir de \mathcal{T} implique que $\mathcal{T} \cup \{ \neg F \}$ possède un modèle.
 - 3. Si $\mathcal T$ est cohérente, alors $\mathcal T$ possède un modèle.

Démonstration

Autres formulations équivalentes du théorème de complétude

- 3 formulations équivalentes du théorème de Complétude.
 - 1. Pour toute formule F, $\mathcal{T} \models F$ implique $\mathcal{T} \vdash F$.
 - 2. Pour toute formule F, F n'est pas prouvable à partir de \mathscr{T} implique que $\mathscr{T} \cup \{ \neg F \}$ possède un modèle.
 - 3. Si $\mathcal T$ est cohérente, alors $\mathcal T$ possède un modèle.

▶ Démonstration

Equivalences :

- Entre 1. et 2. trivial (contraposé).
- 2. implique 3. : facile (considérer une formule F comme p ∧ ¬p toujours fausse).
- ▶ 3. implique 2. :
 - soit F non prouvable dans \mathcal{T} .
 - • T ∪ {¬F} est cohérente en utilisant l'observation du transparent précédent.
 - $\mathcal{T} \cup \{ \neg F \}$ possède donc un modèle \mathfrak{M} .

Effet de bord²

Théorème (Löwenheim-Skolem)

Si \mathcal{T} une théorie sur une signature dénombrable possède un modèle, alors elle possède un modèle dont l'ensemble de base est dénombrable.

^{2.} De la preuve du théorème de complétude.

Plus précisément

Complétude du calcul des prédicats Théorème de complétude

Théorème de compacité

Effet de bord³

Théorème (Compacité)

Soit T une théorie.

 ${\mathcal T}$ possède un modèle si et seulement si toute partie finie de ${\mathcal T}$ possède un modèle.

3. De la nature de ce que l'on appelle une preuve : du fait qu'une preuve fait intervenir un nombre fini de formules.

Au menu

Quelques exemples de théories du premier ordre

Equivalences et formes normales

Systèmes de déduction pour le calcul des prédicats

Complétude du calcul des prédicats

Quelques applications

Le prochain épisode

Corps réels clos

- Application du théorème de Löwenheim-Skolem :
 - le il existe des corps réels clos dénombrables.

Corps réels clos

- Application du théorème de Löwenheim-Skolem :
 - le il existe des corps réels clos dénombrables.
 - (exemple : les réels algébriques $\overline{\mathbb{Q}} \cap \mathbb{R}$).

Corps

- Application du théorème de compacité :
 - ► Soit *F* une formule qui est satisfaite dans tous les corps de caractéristique 0 (sur la signature correspondante).
 - Alors il existe un entier P tel que F est satisfaite dans tous les corps de caractéristique $p \ge P$.

Démonstration :

- ► F doit être une conséquence de $\mathcal{T} \cup \{ \neg F_2, \dots, \neg F_p, \dots \}$.
- ► F doit être une conséquence d'une partie finie de $\mathcal{T} \cup \{\neg F_2, \dots, \neg F_P\}$ pour un certain P.
- ► Elle doit donc être vraie pour tout $p \ge P$.

Au menu

Quelques exemples de théories du premier ordre

Equivalences et formes normales

Systèmes de déduction pour le calcul des prédicats

Complétude du calcul des prédicats

Quelques applications

Le prochain épisode

Aujourd'hui : le monde est beau . . .

- On peut construire un (des) système(s) de preuve valide(s) et complet(s) :
 - Notons : $\mathcal{T} \vdash F$ pour "F se prouve à partir de \mathcal{T} " dans ce système.
 - Notons : $\mathcal{T} \models F$ pour "tout modèle de \mathcal{T} est un modèle de F."
- C'est-à-dire :

Théorème (Validité)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \vdash F$ alors $\mathcal{T} \models F$.

Théorème (Complétude)

Soit \mathcal{T} une théorie. Soit F une formule close. Si $\mathcal{T} \models F$ alors $\mathcal{T} \vdash F$.

Le prochain épisode : ...mais très subtil

Théorème (Incomplétude)

Il y a cependant des formules closes qui sont vraies sur $\mathbb N$ mais qui ne sont pas prouvables.

Exprimez vous.

Page du cours.

Commentaires, avis sur les cours et les PCs.

- Page du cours: https://moodle.polytechnique.fr/course/view.php?id=19276.
- Commentaires, avis sur les cours et les PCs. www.enseignement.polytechnique.fr/informatique/INF412/AVIS.

■ Début d'une parenthèse : que signifie exactement F(t/x)?

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x P(x)$?

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x \ P(x)$?
- Règle 1 : ne substituer que les variables libres.

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x P(x)$?
- Règle 1 : ne substituer que les variables libres.
- Mais cela ne suffit pas :

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - ► F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x P(x)$?
- Règle 1 : ne substituer que les variables libres.
- Mais cela ne suffit pas :
 - ightharpoonup F(x/y) pour $F = \forall x \ P(x+y)$?
 - si on écrit $\forall x \ P(x+x)$, l'occurence libre de x a été capturée.

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x P(x)$?
- Règle 1 : ne substituer que les variables libres.
- Mais cela ne suffit pas :
 - \blacktriangleright F(x/y) pour $F = \forall x \ P(x+y)$?
 - si on écrit $\forall x \ P(x+x)$, l'occurence libre de x a été capturée.
- Règle 2 : éviter les captures de variables

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x P(x)$?
- Règle 1 : ne substituer que les variables libres.
- Mais cela ne suffit pas :
 - ightharpoonup F(x/y) pour $F = \forall x \ P(x+y)$?
 - si on écrit $\forall x \ P(x+x)$, l'occurence libre de x a été capturée.
- Règle 2 : éviter les captures de variables
 - F(x/y) pour $F = \forall x \ P(x+y)$ est $\forall w \ P(w+x)$.

- Début d'une parenthèse : que signifie exactement F(t/x)?
 - F(4/x) pour $F = \forall x P(x)$:
 - ∀x P(4)
 - $\forall x P(x)$?
- Règle 1 : ne substituer que les variables libres.
- Mais cela ne suffit pas :
 - \blacktriangleright F(x/y) pour $F = \forall x \ P(x+y)$?
 - si on écrit $\forall x \ P(x+x)$, l'occurence libre de x a été capturée.
- Règle 2 : éviter les captures de variables
 - F(x/y) pour $F = \forall x \ P(x+y)$ est $\forall w \ P(w+x)$.
 - besoin de renommer.... équivalence alphabétique.

Plus formellement : étape 1. Renommage de variables

- Etape 1 : définir ce qu'est le renommage d'une variable liée, appelé α -conversion.
 - on définit pour cela l'échange de deux variables sur F.
 - Notation : (xy)F :
 - partout où l'on a écrit x lié ou non-lié, on met y et vice-versa.
 - $\exists x \ F$ est identifié avec $\exists y \ (xy)F$ si $y \notin \ell(F)$.
 - $\forall x \ F$ est identifié avec $\forall y \ (xy)F$ si $y \notin \ell(F)$.

Plus formellement : étape 2. Substitutions

- Etape 2 : définir F(t/x) inductivement.
 - sur les termes : trivial.
 - sur les formules qui ne sont pas de la forme ∃yG ou ∀yG : inductif.
 - ► $(\exists y \ G)(t/x)$ est $\exists y \ G(t/x)$ si $x \neq y$ et $y \notin \ell(t)$.
 - $(\forall y \ G)(t/x) \text{ est } \forall y \ G(t/x) \text{ si } x \neq y \text{ et } y \not\in \ell(t).$
 - sinon, renommer y
 - remplacer (∃y G) par (∃z (zy)G) ou (∀y G) par (∀z (zy)G)
 où z est une variable fraiche (qui n'apparaît nul par ailleurs).
 - et réappliquer ces règles.
- Fin de cette parenthèse.

Théorème de validité

Théorème de Validité : Soit 𝒯 une théorie. Soit 𝒯 une formule. Si 𝒯 ⊢ 𝓔, alors tout modèle de 𝒯 est un modèle de la clôture universelle de 𝓔.

■ Rappel : la **clôture universelle** de F est la formule $\forall x_1 \forall x_2 \cdots \forall x_n F(x_1, \cdots, x_n)$, où x_1, \cdots, x_n sont les variables libres de F.

■ Théorème de Complétude. Soit 𝒯 une théorie cohérente. Alors 𝒯 possède un modèle.

- Théorème de Complétude. Soit 𝒯 une théorie cohérente. Alors 𝒯 possède un modèle.
- On se donne une signature Σ , une théorie \mathcal{T} cohérente.

- Théorème de Complétude. Soit 𝒯 une théorie cohérente. Alors 𝒯 possède un modèle.
- On se donne une signature Σ , une théorie \mathcal{T} cohérente.
- On veut construire un modèle \mathfrak{M} de \mathcal{T} .

- Théorème de Complétude. Soit 𝒯 une théorie cohérente. Alors 𝒯 possède un modèle.
- On se donne une signature Σ , une théorie \mathcal{T} cohérente.
- lacksquare On veut construire un modèle $\mathfrak M$ de $\mathcal T$.
- Comment faire?

- Théorème de Complétude. Soit 𝒯 une théorie cohérente. Alors 𝒯 possède un modèle.
- On se donne une signature Σ , une théorie \mathcal{T} cohérente.
- lacksquare On veut construire un modèle $\mathfrak M$ de $\mathcal T$.
- Comment faire?
 - Pas grand-chose à se mettre sous la dent...

- Théorème de Complétude. Soit *T* une théorie cohérente. Alors *T* possède un modèle.
- On se donne une signature Σ , une théorie \mathcal{T} cohérente.
- On veut construire un modèle \mathfrak{M} de \mathcal{T} .
- Comment faire?
 - Pas grand-chose à se mettre sous la dent...
 - Idée 1 : considérer les termes clos sur la signature Σ comme ensemble de base.

- Théorème de Complétude. Soit 𝒯 une théorie cohérente. Alors 𝒯 possède un modèle.
- On se donne une signature Σ , une théorie \mathcal{T} cohérente.
- On veut construire un modèle \mathfrak{M} de \mathcal{T} .
- Comment faire?
 - Pas grand-chose à se mettre sous la dent...
 - ightharpoonup Idée 1 : considérer les termes clos sur la signature Σ comme ensemble de base.
 - ▶ Idée 2 : arriver à obtenir que pour toute formule close F,

 \mathfrak{M} est un modèle de F ssi $\mathcal{T} \vdash F$

Idée 1

- Son ensemble de base (le domaine) est l'ensemble M des termes clos sur la signature Σ de la théorie.
- Interprétations ?
 - 1. si c est une constante, l'interprétation $c^{\mathfrak{M}}$ de c est la constante c elle-même.
 - 2. si f est un symbole de fonction d'arité n, son interprétation $f^{\mathfrak{M}}$ est la fonction qui aux termes clos t_1, \dots, t_n associe le terme clos $f(t_1, \dots, t_n)$.
 - 3. si R est un symbole de relation d'arité n, son interprétation $R^{\mathfrak{M}}$ est le sous-ensemble de M^n constitué des (t_1, \dots, t_n) tels que $\mathcal{T} \vdash R(t_1, \dots, t_n)$.

Trop na $\ddot{}$ if sans hypothèses sur ${\mathscr T}$

- Cela ne suffit pas.
- Illustration d'un premier problème : un seul axiome $P(c) \lor Q(c)$.
 - Les formules P(c), $\neg P(c)$, Q(c), $\neg Q(c)$ sont non-démontrables.
 - ▶ Il faut forcer à avoir P(c) ou $\neg P(c)$.
 - ▶ Remarque : si l'on fixe le choix $\neg P(c)$, alors Q(c) sera prouvable, et donc on aura fixé Q(c).
- Illustration du second problème : deux axiomes $\neg P(c)$ et $\exists x P(x)$.
 - Idée : construire un "témoin" de l'existence d'un objet vérifiant P.

Comment y arriver?

- On dit qu'une théorie 𝒯 est complète si pour toute formule close F on a 𝒯 ⊢ F ou 𝒯 ⊢ ¬F.
- On dit qu'une théorie \mathcal{T} admet des témoins de Henkin si pour toute formule F(x) avec une variable libre x, il existe un symbole de constante c dans la signature tel que $(\exists x F(x) \Rightarrow F(c))$ soit une formule de la théorie \mathcal{T} .
- Proposition. Si T est cohérente, complète, et avec des témoins de Henkin, alors on a la propriété

 \mathfrak{M} est un modèle de F ssi $\mathcal{T} \vdash F$,

▶ et donc 𝒯 possède un modèle.

Comment y arriver?

- On dit qu'une théorie 𝒯 est complète si pour toute formule close F on a 𝒯 ⊢ F ou 𝒯 ⊢ ¬F.
- On dit qu'une théorie \mathcal{T} admet des témoins de Henkin si pour toute formule F(x) avec une variable libre x, il existe un symbole de constante c dans la signature tel que $(\exists x F(x) \Rightarrow F(c))$ soit une formule de la théorie \mathcal{T} .
- Proposition. Si \mathcal{T} est cohérente, complète, et avec des témoins de Henkin, alors on a la propriété

 \mathfrak{M} est un modèle de F ssi $\mathcal{T} \vdash F$,

- ightharpoonup et donc $\mathcal T$ possède un modèle.
- Démonstration de la proposition : par induction (pas très difficile).

Complétion d'une théorie

Proposition. Toute théorie cohérente $\mathcal T$ sur une signature Σ possède une extension $\mathcal T'$ sur une signature Σ' (avec Σ' qui contient Σ) qui est cohérente, complète et avec des témoins de Henkin.

- La signature Σ' est obtenue en ajoutant un nombre dénombrable de nouvelles constantes à la signature Σ .
- La signature Σ' obtenue reste dénombrable et on peut énumérer les formules closes $(F_n)_{n\in\mathbb{N}}$ de Σ' .
- La théorie \mathcal{T}' est obtenue comme l'union d'une suite croissante de théories \mathcal{T}_n , définie par récurrence, en partant de $\mathcal{T}_0 = \mathcal{T}$.
 - ▶ Supposons \mathcal{T}_n cohérente construite.
 - Pour construire \mathcal{T}_{n+1} on considère la formule F_{n+1} dans l'énumération des formules closes de Σ' .
 - Si $\mathcal{T}_n \cup F_{n+1}$ est cohérente, alors on pose $G_n = F_{n+1}$, sinon on pose $G_n = \neg F_{n+1}$.
 - Dans les deux cas $\mathcal{T}_n \cup \{G_n\}$ est cohérente.

- La théorie \mathcal{T}_{n+1} est définie par :
 - 1. $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{G_n\}$ si G_n n'est pas de la forme $\exists x H$.
 - 2. $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{G_n, H(c/x)\}\$ sinon
 - où c est un nouveau symbole de constante qui n'apparaît dans aucune formule de T_n∪{G_n};
 - il y a toujours un tel symbole, car il y a un nombre fini de symboles de constantes dans T_n ∪ {G_n}.
- on montre que par construction la théorie \mathcal{T}_{n+1} est cohérente.

La théorie

$$\mathcal{T}' = \bigcup_{n \in \mathbb{N}} \mathcal{T}_n$$

est cohérente,

- **p** puisque tout sous-ensemble fini de celle-ci est contenu dans l'une des théories \mathcal{T}_n , et donc est cohérent.
- La théorie \mathcal{T}' est aussi complète :
 - ▶ si F est une formule close de Σ' , elle apparaît à un moment dans l'énumération des formules F_n , et par construction, soit $F_n \in \mathcal{T}_n$ soit $\neg F_n \in \mathcal{T}_n$.

- **E**nfin la théorie \mathcal{T}' a des témoins de Henkin :
 - si H(x) est une formule avec la variable libre x, alors la formule $\exists x H$ apparaît comme une formule dans l'énumération des formules F_n .
 - ▶ If y a alors deux cas, soit $\neg F_n \in \mathcal{T}_{n+1}$ ou if y a une constante c telle que $H(c/x) \in \mathcal{T}_{n+1}$.
 - ▶ Dans les deux cas, on obtient facilement $\mathcal{T}_{n+1} \vdash \exists x H(x) \Rightarrow H(c/x)$,
 - ► ce qui prouve que $(\exists x H(x) \Rightarrow H(c/x))$ est dans \mathcal{T}'
 - (sinon, puisque \$\mathcal{T}'\$ est complète, sa négation y serait, et \$\mathcal{T}'\$ ne serait pas cohérente).
- Et donc on a prouvé le théorème de complétude.

