École Polytechnique

CSC_41011

Les bases de la programmation et de l'algorithmique

Jean-Christophe Filliâtre

tables de hachage, mémoïsation

aujourd'hui

- 1. rappel : arithmétique des ordinateurs
- 2. tables de hachage
- 3. les tables de hachage de Java
- 4. application : mémoïsation

un peu d'arithmétique des ordinateurs

un entier est représenté en base 2, sur n chiffres appelés bits

conventionnellement numérotés de droite à gauche

bit de poids fort
$$\nearrow$$
 $b_{n-1} \mid b_{n-2} \mid ... \mid b_1 \mid b_0$ \nwarrow bit de poids faible

typiquement, n vaut 8, 16, 32, ou 64

entier non signé

bits =
$$b_{n-1}b_{n-2}...b_1b_0$$

valeur = $\sum_{i=0}^{n-1}b_i2^i$

bits	valeur
000000	0
000001	1
000010	2
:	:
111110	$2^{n}-2$
111111	$2^{n}-1$

type
$$n$$
 valeurs

char 16 0 .. $2^{16} - 1$

$$'P' = 80 = 000000001010000$$

entier signé : complément à deux

le bit de poids fort b_{n-1} est le bit de signe

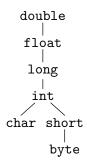
bits =
$$b_{n-1}b_{n-2}...b_1b_0$$

valeur = $-b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$

bits	valeur
1 00000	-2^{n-1}
1 00001	$-2^{n-1}+1$
:	:
1 11110	-2
1 11111	-1
000000	0
000001	1
000010	2
:	:
011110	$2^{n-1}-2$
011111	$2^{n-1}-1$

type	n	valeurs
byte	8	$-2^7 2^7 - 1$
short	16	-2^{15} $2^{15}-1$
int	32	$-2^{31} 2^{31} - 1$
long	64	$-2^{63} \dots 2^{63} - 1$

conversions automatiques



opérations

Java fournit des opérations pour manipuler la représentation binaire

- opérations logiques
- opérations de décalage

opérations logiques

opération		exemple
~ négation	х	00101001
	~X	11010110
& ET	х	00101001
	у	01101100
	х & у	00101000
I OU	X	00101001
	у	01101100
	х І у	01101101
OU exclusif	X	00101001
	у	01101100
	x ^ y	01000101

opérations de décalages

• décalage logique à gauche (insère des 0 de poids faible)

$$x \ll 2 \qquad \leftarrow \boxed{b_{n-3} \mid \dots \mid b_1 \mid b_0 \mid \mathbf{0} \mid \mathbf{0}} \leftarrow$$

• décalage logique à droite (insère des 0 de poids fort)

• décalage arithmétique à droite (réplique le bit de signe)

$$x \gg 2$$
 $\rightarrow b_{n-1} b_{n-1} b_{n-1} \dots b_3 b_2$

débordement de capacité

un calcul arithmétique peut provoquer un débordement de capacité (qui n'est pas signalé)

```
System.out.println(100000 * 100000);
```

1410065408

le résultat peut même être du mauvais signe

```
System.out.println(200000 * 100000);
```

-1474836480

tables de hachage

12

produire du texte aléatoire, pas trop mauvais, avec l'idée suivante

analyse

- choisir un texte (assez grand)
- considérer tous les triplets de mots consécutifs (A, B, C)

synthèse

- choisir deux mots A et B
- choisir C au hasard parmi les triplets (A, B, C)
- recommencer avec B et C

ici on prend le texte intégral de deux œuvres de Jules Verne

- Le tour du monde en quatre-vingts jours
- Voyage au centre de la terre

(librement accessibles sur le projet Gutenberg)

Phileas Fogg avait accompli ce tour du monde en quatre-vingts jours !

```
 \begin{array}{lll} \text{(Phileas, Fogg)} & \rightarrow \text{ avait} \\ \text{(Fogg, avait)} & \rightarrow \text{ accompli} \\ \text{(avait, accompli)} & \rightarrow \text{ ce} \\ \text{(accompli, ce)} & \rightarrow \text{ tour} \\ \text{(ce, tour)} & \rightarrow \text{ du} \\ \text{(tour, du)} & \rightarrow \text{ monde} \\ \text{(du, monde)} & \rightarrow \text{ en} \\ \text{etc.} \end{array}
```

199 occurrences des deux mots consécutifs Phileas Fogg

```
\begin{array}{cccc} \text{(Phileas, Fogg)} & \rightarrow \text{avait} & \text{(17 fois)} \\ & \rightarrow \text{ \'etait} & \text{(19 fois)} \\ & \rightarrow \text{ distribua} & \text{(1 fois)} \\ & \rightarrow \text{ au} & \text{(2 fois)} \\ & \text{ etc.} \end{array}
```

tirage aléatoire

Phileas Fogg et ses compagnons s'aventurent

à la surface de la hête

quelle structure de données?

il nous faut un dictionnaire associant à des paires de mots (A, B) des multiensembles de mots C

un dictionnaire associe des valeurs de type V à des clés de type K

- ajouter une nouvelle entrée dans le dictionnaire void put(K key, V value);
- chercher dans le dictionnaire
 V get(K key);
- mais aussi remove, size, clear, etc.

une idée simple

si les clés étaient des entiers dans 0..M-1 un tableau suffirait

on va se ramener à cette situation avec une fonction

$$f: \mathbb{K} \to 0..M-1$$

c'est l'idée à la base des tables de hachage

en pratique

on commence par définir une fonction de hachage $h: \mathbb{K} \to \mathbb{Z}$

puis on pose

$$f(k) = h(k) \mod M$$

on range alors la clé k à l'indice f(k) dans un tableau de taille M

$$K = String$$

 $h(k) = k.length()$
 $M = 7$

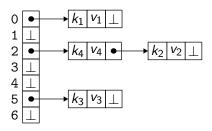
k	h(k)	$h(k) \mod 7$
$k_1 =$ "We like"	7	0
$k_2 = "in"$	2	2
$k_3 = "Java."$	5	5
$k_4 =$ "the codes"	9	2

certaines clés peuvent donner le même indice

k	h(k)	$h(k) \mod 7$
$k_1 =$ "We like"	7	0
$k_2 = "in"$	2	2
$k_3 = "Java."$	5	5
$k_4 =$ "the codes"	9	2

on parle de collision

chaque case du tableau contient plusieurs valeurs, dans une liste une telle liste s'appelle un seau (en anglais bucket)



- les tee-shirts dans le tiroir 0
- les pulls dans le tiroir 1
- les pantalons dans le tiroir 2

mise en œuvre

26

nos clés sont ici des paires de chaînes de caractères

```
class Pair {
  String fst, snd;

Pair(String fst, String snd) {
    this.fst = fst;
    this.snd = snd;
}
```

fonction de hachage

on choisit de faire la somme

```
class Pair {
    ...
    int hash() {
       return hashString(this.fst) + hashString(this.snd);
    }
}
```

reste à écrire hashString

```
int hashString(String s) {
  return ???
}
```

pour une chaîne on choisit

$$s_0 31^{n-1} + s_1 31^{n-2} + \cdots + s_{n-1}$$

```
int hashString(String s) {
  int h = 0;
  for (int i = 0; i < s.length(); i++)
    h = 31 * h + s.charAt(i);
  return h;
}</pre>
```

exemple:

```
hashString("Phileas")

= 'P'31^6 + 'h'31^5 + 'i'31^4 + 'l'31^3 + 'e'31^2 + 'a'31 + 's'

= 80 \times 31^6 + 104 \times 31^5 + 105 \times 31^4 + 108 \times 31^3 + ...

= 1063569468 (en fait 74078013500 mais débordement!)
```

rien d'autre qu'une liste chaînée de couples (clé, valeur)

```
class Bucket {
          Pair key; // clé = paire de mots (w1, w2)
    Vector<String> value; // valeur = liste de mots w3
          Bucket next;

    // et son constructeur
}
```

une table de hachage est un tableau de seaux

```
class HashTable {
  private Bucket[] buckets;
```

le nombre de seaux est choisi arbitrairement

```
private final static int M = 5003;

HashTable() {
   this.buckets = new Bucket[M];
  }

(on peut ajouter un second constructeur prenant M en argument)
```

ajout dans la table

```
void put(Pair key, Vector<String> value) {
  int i = key.hash() % M;
  this.buckets[i] = new Bucket(key, value, this.buckets[i]);
}
```

a la complexité de key.hash()

en pratique O(1)

note : on ne cherche pas ici à savoir si key est déjà dans la table (ce sera fait ailleurs, plus loin)

key.hash() peut être négatif, en cas de débordement arithmétique

key.hash() % M est alors également négatif

et

reste incorrect car Math.abs (-2^{31}) = -2^{31}

• rectifier le modulo

• masquer le bit de signe

int i = (key.hash() & 0x7ffffffff) % M;
$$(car 0x7ffffffff = 2^{31} - 1 = 01111...111_2)$$

• prendre $M = 2^k$ puis

car alors $M-1=2^k-1=00\dots0011\dots11_2$ (évite l'opération % qui est coûteuse)

rechercher dans la table

pour chercher dans la table, il faut se donner une égalité sur les clés

cette égalité doit être cohérente avec la fonction de hachage

$$\forall x y, x. \text{equals}(y) \Rightarrow x. \text{hash}() = y. \text{hash}()$$

égalité sur les clés

```
class Pair {
    ...
    boolean equals(Pair p) {
      return this.fst.equals(p.fst) && this.snd.equals(p.snd);
    }
}
(rappel : on compare des chaînes avec equals, pas avec ==)
```

```
class Bucket {
 Pair key;
 Vector<String> value;
 Bucket next;
  static Vector<String> get(Bucket b, Pair k) {
   while (b != null) {
     if (b.key.equals(k))
       return b.value;
     b = b.next;
   return null; // pas dans le seau
```

rechercher dans la table

```
class HashTable {
 Vector<String> get(Pair key) {
   int i = (key.hash() & 0x7ffffffff) % M; // comme dans put
   return Bucket.get(this.buckets[i], key);
```

complexité : (au pire) la longueur du seau

retour sur le problème initial

39

nos chaînes de Markov

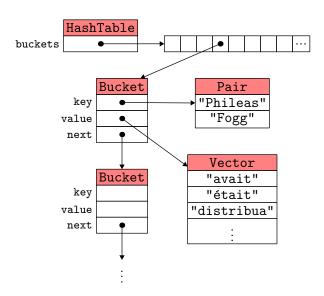
static HashTable chains = new HashTable();

pour chaque triplet de mots consécutifs w1 w2 w3 du texte

```
Pair p = new Pair(w1, w2);
Vector<String> l = chains.get(p);
if (l == null) {
    l = new Vector<String>();
    chains.put(p, l);
}
l.add(w3);
```

(le code complet est donné sur la page du cours)

42



```
pour générer le texte aléatoirement, il faut choisir un élément au hasard parmi les mots qui suivent (w_1, w_2) c'est-à-dire choisir au hasard dans chains.get((w_1, w_2))
```

```
// ici on suppose que v contient au moins un élément
static String randomElement(Vector<String> v) {
  int i = (int) (Math.random() * v.size());
  return v.get(i);
}
```

on a maintenant tous les éléments pour terminer notre programme

- 1. pour démarrer, on choisit une paire (w_1, w_2) au hasard dans la table
 - ou mieux encore deux mots au début d'une phrase
- 2. puis on répète
 - 2.1 choisir w_3 au hasard dans chains.get((w_1, w_2))
 - 2.2 décaler $w_1, w_2 \leftarrow w_2, w_3$

(le code complet est donné sur la page du cours)

La veille, le soleil s'était couché dans une tête très grosse et assez

Parbleu! – Le tour du monde entier, si son cratère aboutit au centre du globe!

Puis je m'endormis sur un espace de plusieurs centaines d'atmosphères

(mais aussi beaucoup de phrases incorrectes)

efficacité

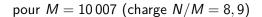
46

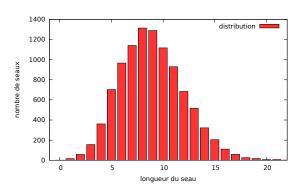
distribution

N = 89 244 entrées dans la table (i.e. paires différentes)

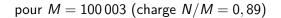
observons les longueurs des seaux, pour différentes valeurs de M (et donc de la **charge** N/M)

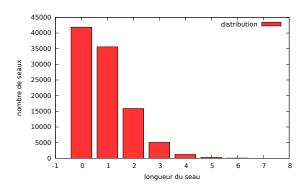
48





49





en pratique

on choisit M de l'ordre du nombre d'entrées

cela suppose qu'on le connaît; et sinon?

51

utiliser un tableau redimensionnable

une stratégie possible : quand la charge atteint 1, doubler la valeur de M

de manière générale, quand la charge atteint une certaine valeur (la bibliothèque Java utilise 0,75 par défaut)

redimensionnement

cela veut dire allouer un tableau deux fois plus grand et y ré-insérer toutes les entrées

cela coûte O(N)

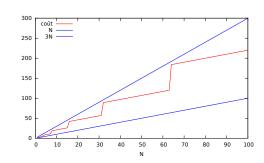
put n'a plus une complexité O(1)

certains appels à put sont O(1) (pas de redimensionnement) d'autres O(N) où N est le nombre d'entrées (redimensionnement)

mais la complexité amortie de put reste O(1)

c'est le même calcul que la semaine dernière :

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$



les tables de hachage de Java

deux classes génériques

 java.util.HashSet<E> ensemble d'éléments de type E

java.util.HashMap<K, V>
 dictionnaire associant des valeurs de type V à des clés de type K

structure d'ensemble

```
s.add(e);  // ajoute un élément
s.contains(e);  // teste l'appartenance
s.remove(e);  // supprime un élément

s.isEmpty()  // l'ensemble est-il vide ?
s.size()  // le cardinal
...
```

on peut parcourir tous les éléments avec

```
for (E x : s) ...
```

structure de dictionnaire

chaque clé est associée à au plus une valeur

```
h.put(k, v); // ajoute une entrée
h.get(k); // recherche (renvoie null si pas d'entrée)
h.remove(k); // supprime une entrée

h.isEmpty() // le dictionnaire est-il vide ?
h.size() // le nombre d'entrées
...
```

on peut parcourir toutes les entrées avec

```
for (Entry<K, V> e : h.entrySet()) ...
```

fonction de hachage et égalité

que ce soit pour HashSet ou HashMap, il faut munir les types E et K d'une fonction de hachage et d'une égalité

tout objet Java possède deux méthodes héritées de la classe Object

```
int hashCode()
boolean equals(Object o)
```

méthodes hashCode et equals

dans la classe Object

- hashCode renvoie un entier arbitraire
- equals coïncide avec ==

dans une autre classe, il faudra redéfinir ces deux méthodes (si besoin)

important

il faut redéfinir hashCode et equals de manière cohérente

$$\forall x y, x.equals(y) \Rightarrow x.hashCode() = y.hashCode()$$

dans la classe String

• hashCode renvoie un entier calculé en fonction des caractères

$$s.hashCode() = s_0 31^{n-1} + s_1 31^{n-2} + \cdots + s_{n-1}$$

• equals est l'égalité structurelle des chaînes

$$s.equals(t)$$
 ssi $s.length() = t.length()$ et $\forall i, s_i = t_i$

(également déjà fait dans les classes Integer, Char, etc.)

```
class Pair {
   String fst, snd;

pour la fonction de hachage, c'est facile :

   @Override // signifie au compilateur une redéfinition
   public int hashCode() {
     return this.fst.hashCode() + this.snd.hashCode();
   }
```

notre classe Pair

pour l'égalité, c'est a priori facile : on compare les deux champs fst et les deux champs snd avec l'égalité des chaînes

il y a une difficulté technique, cependant

```
public boolean equals(Object o) {
   ...
}
```

l'argument est de type Object, et non pas Pair

il faut donc écrire

```
public boolean equals(Object o) {
  Pair p = (Pair)o;
  return this.fst.equals(p.fst) && this.snd.equals(p.snd);
}
```

le cast (Pair)o donne lieu à un test dynamique

il n'échouera pas si cette méthode est appelée depuis HashSet ou HashMap si on écrit plutôt

```
public boolean equals(Pair p) {
  return this.fst.equals(p.fst) && this.snd.equals(p.snd);
}
```

alors la méthode equals est surchargée au lieu d'être redéfinie

et c'est toujours la méthode equals de la classe Object qui sera appelée par HashMap

(surcharge/redéfinition : relire éventuellement le chapitre 1 du poly)

mais si on ajoute @Override

```
@Override
public boolean equals(Pair p) {
  return this.fst.equals(p.fst) && this.snd.equals(p.snd);
}
```

le compilateur nous signale notre erreur

```
The method equals(Pair) of type Pair must override or implement a supertype method
```

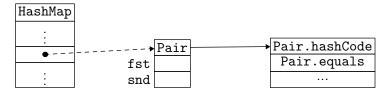
car il n'y a pas de telle méthode à redéfinir

programmation orientée objet

le code de HashSet ou de HashMap ne connaît pas la classe Pair

```
class HashMap<K, V> {
    ...
    void put(K k, V v) { ... k.hashCode() ... }
}
```

pourtant il utilise bien les méthodes hashCode et equals de la classe Pair grâce à l'appel dynamique de méthode



récapitulation

une table de hachage offre une structure très efficace pour

- ajouter
- chercher
- supprimer

en supposant une fonction de hachage répartissant bien les valeurs

en revanche, pas d'ordre sur les éléments

structure d'ensemble, contenant N éléments

	add	contains	get(i)	
tableau	O(1) amorti	O(N)	O(1)	•
tableau trié	O(N)	$O(\log N)$	O(1)	(voir poly)
liste	O(1)	O(N)	O(i)	
table de hachage	O(1) amorti	O(1)		

70

si vous avez besoin d'un ensemble ou d'un dictionnaire, utilisez une table de hachage

si vous avez programmé en Python, vous avez sûrement déjà utilisé des tables de hachage, peut-être sans le savoir

```
>>> d = {}
```

```
>>> d["foo"] = 42
>>> print(d["foo"])
42
```

```
>>> d["bar"]
KeyError: 'bar'
```

```
HashMap<String, Integer> d =
  new HashMap<>();
```

```
d.put("foo", 42);
System.out.prinln(d.get("foo"));
```

```
d.get("bar")
// renvoie null
```

application: mémoïsation

72

idée très simple

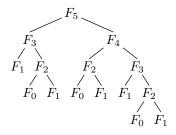
ne pas faire deux fois le même calcul

la suite de Fibonacci

$$\begin{cases} F_0 = 0 \\ F_1 = 1 \\ F_n = F_{n-2} + F_{n-1} \text{ pour } n \ge 2 \end{cases}$$

```
static long fib(int n) {
  if (n <= 1) return n;
  return fib(n - 2) + fib(n - 1);
}</pre>
```

on calcule plusieurs fois la même chose



on peut montrer que le calcul de F_n est en $O(\phi^n)$ (cf exercice 2 du poly)

idée : stocker les résultats déjà calculés dans une table

```
on commence par regarder si le calcul a déjà été fait
```

```
static long fibMemo(int n) {
   Long l = memo.get(n);
   if (l != null) return l; // si oui, on le renvoie

sinon, on fait le calcul
   if (n <= 1)
        l = (long)n;
   else
        l = fibMemo(n - 2) + fibMemo(n - 1);</pre>
```

puis on le stocke et on le renvoie

```
memo.put(n, 1);
return 1;
```

le calcul de F_n est maintenant en O(n) (fibMemo(k) est appelé au plus deux fois pour chaque k)

on calcule ainsi $F_{80}=23416728348467685$ instantanément

bien entendu, sur cet exemple un simple tableau aurait suffit et on aurait même pu le remplir dans l'ordre

dans ce cas, on parle de **programmation dynamique** (voir le $\underline{\text{poly}}$ chapitre 11)

d'une manière générale

- les arguments ne sont pas forcément des entiers
- même dans ce cas, on ne calcule pas forcément f(0), f(1), ..., f(n)

la mémoïsation est alors une approche avantageuse

```
static HashMap<Argument, Resultat> memo = new HashMap<>();
```

```
static Resultat f(Argument x) {
  Resultat r = memo.get(x);
  if (r != null) return r;
  // calcul de r = f(x)
  ...
  memo.put(x, r);
  return r;
}
```

un exemple plus complexe

dans une matrice d'entiers $N \times N$

sélectionner N éléments, un sur chaque ligne et sur chaque colonne, de somme maximale

ici
$$N=15$$

un exemple plus complexe

7	53	183	439	863	497	383	563	79	973	287	63	343	169	583
627	343	773	959	943	767	473	103	699	303	957	703	583	639	913
447	283	463	29	23	487	463	993	119	883	327	493	423	159	743
217	623	3	399	853	407	103	983	89	463	290	516	212	462	350
960	376	682	962	300	780	486	502	912	800	250	346	172	812	350
870	456	192	162	593	473	915	45	989	873	823	965	425	329	803
973	965	905	919	133	673	665	235	509	613	673	815	165	992	326
322	148	972	962	286	255	941	541	265	323	925	281	601	95	973
445	721	11	525	473	65	511	164	138	672	18	428	154	448	848
414	456	310	312	798	104	566	520	302	248	694	976	430	392	198
184	829	373	181	631	101	969	613	840	740	778	458	284	760	390
821	461	843	513	17	901	711	993	293	157	274	94	192	156	574
34	124	4	878	450	476	712	914	838	669	875	299	823	329	699
815	559	813	459	522	788	168	586	966	232	308	833	251	631	107
813	883	451	509	615	77	281	613	459	205	380	274	302	35	805

un exemple plus complexe

7	53	183	439	863	497	383	563	79	973	287	63	343	169	583
627	343	773	959	943	767	473	103	699	303	957	703	583	639	913
447	283	463	29	23	487	463	993	119	883	327	493	423	159	743
217	623	3	399	853	407	103	983	89	463	290	516	212	462	350
960	376	682	962	300	780	486	502	912	800	250	346	172	812	350
870	456	192	162	593	473	915	45	989	873	823	965	425	329	803
973	965	905	919	133	673	665	235	509	613	673	815	165	992	326
322	148	972	962	286	255	941	541	265	323	925	281	601	95	973
445	721	11	525	473	65	511	164	138	672	18	428	154	448	848
414	456	310	312	798	104	566	520	302	248	694	976	430	392	198
184	829	373	181	631	101	969	613	840	740	778	458	284	760	390
821	461	843	513	17	901	711	993	293	157	274	94	192	156	574
34	124	4	878	450	476	712	914	838	669	875	299	823	329	699
815	559	813	459	522	788	168	586	966	232	308	833	251	631	107
813	883	451	509	615	77	281	613	459	205	380	274	302	35	805

$$563 + 699 + \cdots + 522 + 451 = 7805$$

on généralise le problème : quel maximum f(i, C) pour

- pour des lignes $\geq i$
- ullet pour des colonnes dans l'ensemble C de cardinal N-i

?

$$f(N,\emptyset) = 0$$

$$f(i,C) = \max_{j \in C} m[i][j] + f(i+1, C \setminus \{j\})$$

la solution est alors

$$f(0, \{0, \ldots, N-1\})$$

```
final static int m[][] = { { 7, 53, ... } };
final static int n = m.length;
```

$$f(i,C) = \max_{j \in C} m[i][j] + f(i+1,C \setminus \{j\})$$

```
static int f(int i, Set c) {
  if (i == n) return 0;
  int s = 0;
  for (int j = 0; j < n ; j++)
    if (c.contains(j))
      s = Math.max(s, m[i][j] + f(i + 1, c.remove(j)));
  return s;
}</pre>
```

(pour une représentation astucieuse et efficace de c, voir le poly page 146)

déception

le programme ne termine pas

il y a beaucoup de calculs : $15!\approx 1,3\times 10^{12}$

et pourtant, il n'y a que

- 15 valeurs pour *i*
- 2¹⁵ valeurs pour *C*

c'est-à-dire seulement

$$15 \times 2^{15} = 15 \times 32768 = 491520$$

calculs f(i, C) différents au plus

c'est beaucoup moins que 15!

on calcule plusieurs fois la même chose

```
en effet si on choisit m[0][0] 7 53 183 439 ... puis m[1][1] 627 343 773 959 ... : 

ou bien m[0][1] 7 53 183 439 ... puis m[1][0] 627 343 773 959 ...
```

on poursuit dans les deux cas avec $f(2, \{2, ..., 14\})$

appliquons la mémoïsation

lorsque le résultat est déjà dans la table, c'est O(1)

la complexité est maintenant $O(N^2 \times 2^N)$

plus précisément, le corps de f n'est exécuté qu'au plus 491 520 fois

c'est maintenant instantané (74ms); on trouve 13 938

7	53	183	439	863	497	383	563	79	973	287	63	343	169	583
627	343	773	959	943	767	473	103	699	303	957	703	583	639	913
447	283	463	29	23	487	463	993	119	883	327	493	423	159	743
217	623	3	399	853	407	103	983	89	463	290	516	212	462	350
960	376	682	962	300	780	486	502	912	800	250	346	172	812	350
870	456	192	162	593	473	915	45	989	873	823	965	425	329	803
973	965	905	919	133	673	665	235	509	613	673	815	165	992	326
322	148	972	962	286	255	941	541	265	323	925	281	601	95	973
445	721	11	525	473	65	511	164	138	672	18	428	154	448	848
414	456	310	312	798	104	566	520	302	248	694	976	430	392	198
184	829	373	181	631	101	969	613	840	740	778	458	284	760	390
821	461	843	513	17	901	711	993	293	157	274	94	192	156	574
34	124	4	878	450	476	712	914	838	669	875	299	823	329	699
815	559	813	459	522	788	168	586	966	232	308	833	251	631	107
813	883	451	509	615	77	281	613	459	205	380	274	302	35	805

(si on veut les 15 nombres, il faut modifier un peu le programme)

le TD de cette semaine

petit problème de combinatoire : combien de grilles ne contenant jamais trois fruits identiques consécutifs ?

pour une grille 10×10 et deux fruits différents il y a déjà des millions de milliards de combinaisons

saurez-vous en calculer le nombre exact?

la semaine prochaine

- lire le poly, chapitres
 - 1.2.1 Arithmétique des ordinateurs
 - 5 Tables de hachage
 - 11 Programmation dynamique et mémoïsation

il y a des **exercices** dans le poly suggestions : ex 28 p 71, ex 78 p 137

• bloc 3 : classes disjointes